Antifungal efficacy of chitosan nanoparticles against phytopathogenic fungi and inhibition of zearalenone production by Fusarium graminearum


  • Hanem A. Abdel-Aliem
  • Ahmed Y. Gibriel
  • Nagwa M. H. Rasmy
  • Ahmed F. Sahab
  • Aziza A. El-Nekeety
  • Mosaad Attia Abdel-Wahhab Food Toxicology & Contaminants Dept., National Research Center, Dokki, Cairo



Chitosan (COS) is a natural safe biopolymer that received great attention in agriculture, food, biomedical, pharmaceutical and environmental industries because their biocompatible, biodegradable, non-toxic and non-allergenic natures. The aims of the current study were to synthesize and characterize chitosan nanoparticles (COS-NPs), to evaluate their antifungal activity against phytopathogenic fungi and inhibition of zearalenone (ZEN) production by Fusarium graminearum. The results revealed that the deacetylation degree of COS was 86.9 0.44 %, the average of molar mass was 171.41 ± 0.29 g/mol, molecular weight was 244 ± 7 kDa and the concentration of free amino groups was 0.05 ± 0.019 mol L-1. COS-NPs showed the nanorod form with rough nature and particle size was around 180 nm. COS-NPs showed an excellent antifungal activity against Alternaria tenuis, Aspergillus niger, A. flavus, Baeuvaria bassiana, Fusarium graminearum, Fusarium oxysporum, Penicillium sp. and Sclerotium rolfsii in dose dependent manner. At a concentration of 800 ppm, it inhibits ZEN production by Fusarium graminearum. It could be concluded that COS-NPs are promise candidate as safe antifungal capable for the prevention of ZEN production.


Download data is not yet available.

Author Biography

Mosaad Attia Abdel-Wahhab, Food Toxicology & Contaminants Dept., National Research Center, Dokki, Cairo

Toxicology & Food Safety


Abdel-Wahhab, M.A., Aljawish, A., El-Nekeety, A.A., Abdel-Aiezm, S.H., Abdel-Kader, H.A.M., Rihn, R.H., Joubert, O. 2015. Chitosan nano particles and quercetin modulate gene expression and prevent the genotoxicity of aflatoxin B1 in rat liver. Toxicology Reports 2: 737-747.

Agrawal, P., Strijkers, G.J., Nicolay, K. 2010. Chitosan-based systems for molecular imaging. Advanced Drug Delivery Reviews 62: 42-58.

Aljawish, A., Chevalot, I., Piffaut, B., Rondeau-Mouro, C., Girardin, M. 2012. Functionalization of chitosan by laccase-catalyzed oxidation of ferulic acid and ethyl ferulate under heterogeneous reaction conditions. Carbohydr Polymer 87 (1): 537-544.

Allan, C.R., Hadwiger, L.A. 1979. The fungicidal effect of chitosan on fungi of varying cell wall composition. Experimental Mycology 3(3): 285-287.

Anraku, M., Kabashima, M., Namura, H., Maruyama, T., Otagiri, M., Gebicki, J.M., Tomida, H. 2008. Antioxidant protection of human serum albumin by chitosan. International Journal of Biological Macromolecules 43(2): 159-164.

Antoniou, J., Liu, F., Majeed, H., Qi, J., Yokoyama, W., Zhong, F. 2015. Physicochemical and morphological properties of size-controlled chitosan-tripolyphosphate nanoparticles. Colloids Surf A: Physicochemical and Engineering Aspects 465: 137-146.

Badawy, M.E., Rabea, E.I. 2011. A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. International Journal of Carbohydrate Chemistry .doi:10.1155/2011/460381.

Barnett, H.L., Hunter, B.B. 2000. Illustrated genera of imperfecti fungi minneapolis: Burgess publishing Co. 241.

Bautista-Baños, S., Hernández-López, M., Bosquez-Molina, E., Wilson, C.L. 2003. Effects of chitosan and plant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality of papaya fruit. Crop Protection 22 (9): 1087-1092.

Ben Salah-Abbès, J., Abbès, S., Abdel-Wahhab, M.A., Oueslati, R. 2010. Immunotoxicity of zearalenone in Balb/c mice in a high subchronic dosing study counteracted by Raphanus sativus extract. Immunopharmacology Immunotoxicology 32(4):628-36.

Bernhoft, A., Torp M., Clasen, P.E., Løes, A.K., Kristoffersen, A. 2012. Influence of agronomic and climatic factors on Fusarium infestation and mycotoxins contamination of cereals in Norway. Food Additives and Contaminants: Part A. 29(7): 1129-1140.

Bobbarala, V., Katikala, P.K., Naidu, K.C., Penumaj, S. 2009. Antifungal activity of selected plant extracts against phytopathogenic fungi Aspergillus niger f2723. Indian Journal of Science Technology 2: 87-90.

Borkow, G., Gabbay, J. 2005. Copper as a biocidal tool. Current Medicinal Chemistry 12(18): 2163-75.

Bragg, P.D., Rainnie, D.J. 1974. The effect of silver ions on the respiratory chains of Escherichia coli. Candain Journal of Microbiology 20: 883-889.

Brugnerotto, J., Lizardi, J., Goycoolea, F.M., Arguelles-Monal, W., Desbrieres, J., Rinaudo, M. 2001. An infrared investigation in relation with chitin and chitosan characterization. Polymer 42(8): 3569-3580.

Brunel, F., El Gueddari, N.E., Moerschbacher, B.M. 2013. Complexation of copper (II) with chitosan nanogels: toward control of microbial growth. Carbohydrate Polymer 92(2): 1348-56.

Chung, M.J., Park, J.K., Park, Y.I. 2012. Anti-inflammatory effects of low-molecular weight chitosan oligosaccharides in IgE–antigen complex-stimulated RBL-2H3 cells and asthma model mice. International Immunopharmacology 12(2): 453-459.

Domsch, K., Gams, W., Anderson, T.H. 2007. Compendium of soil fungi. 2nd Edition. IHW-Verlag, Eching.

Douglas, J.O., Connor, C.H., Thomas, E.M. 1998. Dietary chitosan inhibits hyper-cholesterolaemia and atherogenesis in the apolipoprotein E-deficient mouse model of atherosclerosis. Atherosclerosis 138: 329-334.

Duncan, B.D. 1957. Multiple range tests for correlated and heteroscedastic means. Biometrics 13: 359-364.

El-Denshary, E.S., Aljawish, A., El-Nekeety, A.A., Hassan, N.S., Saleh, R.H., Rihn, B.H., Abdel-Wahhab, M.A. 2015. Possible synergistic effect and antioxidant properties of chitosan nanoparticles and quercetin against carbon tetrachloride-induce hepatotoxicity in rats. Soft Nanoscience Letters 5: 36-51.

El-Mohamedy, R.S., Abdel-Kareem, F., Jaboun-Khiareddine, H., Daami-Remadi, M. 2014. Chitosan and Trichoderma harzianum as fungicide alternatives for controlling Fusarium crown and root of tomato. Tunisian Journal of Plant Protection 9: 31-43.

Fahima, A., Kheireddine, S., Belaaouad. 2013. Sodium tripolyphosphate (STPP) as a novel corrosion inhibitor for mild steel in 1M HCl A. Journal of Optoelectronics and Advanced Materials 15: 451-456.

Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N., Kim, J.O. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research 52: 662-668.

Foor, S.R., Tenne, F.D., Sinclair, B. 1976. Occurrence of seed borne microorganisms and germination in culture for determining seed health in soybean. Plant Disease Reptorts 60: 970-973.

Galván MI, Akuaku J, Cruz I, Cheetham J, Golshani A, Smith ML. 2013. Disruption of protein synthesis as antifungal mode of action by chitosan. International Journal of Food Microbiology 164: 108-112.

Hui, A., Furong, W., Yuqi, X., Xiaomin, C., Chaoliang, L. 2012. Antioxidant, antifungal and antiviral activities of chitosan from the larvae of housefly, Musca domestica L. Food Chemistry 132: 493-498.

IARC. 1999. Overall evaluations of carcinogenicity to humans (pp. 1-36). International Agency for Research on Cancer. IARC Monographs, 1-73.

Ing, L.Y., Zin, N.M., Sarwar, A., Katas, H. 2012. Antifungal activity of chitosan nanoparticles and correlation with their physicalproperties. International Journal of Biomaterials 2012:632698.

Jayakumar, R., Prabaharan, M., Sudheesh, Kumar, P.T., Nair, S.V., Tamura, H. 2011. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances 29(3): 322-337.

Jeon, Y.J., Kim, S.K. 2001. Potential immuno-stimulating effect of antitumoral fraction of chitosan oligosaccharides. Journal of Chitin Chitosan 6(4): 163-167.

Jia, L. 2005. Nanoparticle formulation increases oral bioavailability of poorly soluble drugs: approaches experimental evidences and theory. Current Nanoscience 1(3): 237-243.

Jianglin, W., Wei, H., Qun, L., Shengmin, Z. 2011. Dual-functional composite with anticoagulant and antibacterial properties based on heparinized silk fibroin and chitosan. Colloid Surface B. 85: 241-247.

Kaur, P., Thakur, R., Choudhary, A. 2012. An in-vitro study of antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. International Journal of Science Technology Research 1(6): 83-86.

Kean, T., Thanou, M. 2010. Biodegradation, biodistribution and toxicity of chitosan. Advanced Drug Delivery Reviews 62: 3-11.

Kim, S.W., Jung, J.H., Lamsal, K., Kim, Y.S., Min, J.S., Lee, Y.S. 2012. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40(1): 53-58.

Liu, D., Wei, Y., Yao, P., Jiang, L. 2006. Determination of the degree of acetylation of chitosan by UV spectrophotometry using dual Standards. Carbohydrate Research 341(6): 782-785.

Magan, N., Aldred, D., Mylona, K., Lambert, R.J.W. 2010. Limiting mycotoxins in stored wheat. Food Additives and Contaminants: Part A. 27(5): 644-650.

Martinez-Gutierrez, F., Olive, P.L., Banuelos, A., Orrantia, E., Nino, N., Sanchez, E.M., Rui, F., Bach, H., Av-Gay, Y. 2010. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine 6(5): 681-688.

Müller, R.H., Böhm, B.H.L. 1998. Nanosuspensions, emulsions and nanosuspensions for the formulation of poorly soluble drugs. Stuttgart Medpharm 149-174.

Nguyen, S., Hisiger, S., Jolicoeur, M., Winnik, F.M., Buschmann, M.D. 2009. Fractionation and characterization of chitosan by analytical SEC and H-1 NMR after semi-preparative SEC. Carbohydratr Polymer 75(4): 636-645.

Palma-Guerrero, J., Lopez-Jimenez, A.J., Pérez-Berná, J.A., Huang, I.C., Jansson, H.B., Salinas, J., Villalaín, J., Read, N.D., Lopez-Llorca, L.V. 2010. Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Molecular Microbiology 75: 1021-1032.

Park, P.J., Je, J.Y., Byun, H.G., Moon, S.H., Kim, S.K. 2004. Antimicrobial activity of hetero-chitosans and their oligosaccharides with different molecular weights. Molecular Microbiology Biotechnology 14: 317-323.

Park, Y., Kim, M.H., Park, S.C., Cheong, H., Jang, M.K., Nah, J.W., Hahm, K.S. 2008. Investigation of the antifungal activity and mechanism of action of LMWS-chitosan. Journal of Microbiology Biotechnology 18: 1729-1734.

Pitt, J.I., Hocking, A.D. 2009. Fungi and food spoilage (3rd ed., p. 519). Dordrecht, Heidelberg, London, New York: Springer.

Qi, L., Xu, Z., Jiang, X., Hu, C., Zou, X. 2004. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research 339(16): 2693-2700.

Qin, C., Li, H., Xiao, Q., Liu, Y., Zhu, J., Du, Y. 2006. Water solubility of chitosan and its antimicrobial activity. Carbohydrate Polymer 63(3): 367-374.

Qin, Y., Xing, R., Liu, S., Li, K., Meng, X., Li, R., Cui, J., Li, B., Li, P. 2012. Novel thiosemicarbazone chitosan derivatives: preparation, characterization, and antifungal activity. Carbohydrate Polymer 87: 2664-2670.

Reimann, S., Deising, H.B. 2000. Fungicides: risk of resistance development and search for new targets. Archives Phytopathology and Plant Protection 33: 329-349.

Ruolan, G., Wenzhong, S., Hong, Z., Zhuona, W., Zhiyun, M., Xiaoxia, Z. 2010. The performance of a fly-larva shell-derived chitosan sponge as an absorbable surgical hemostatic agent. Biomaterial 31: 1270-1277.

Sabater-Vilar, M., Malekinejad, H., Selman, M.H.J., Van der Doelen, M.A.M., Fink-Gremmels, J. 2007. In vitro assessment of adsorbents aiming to prevent deoxynivalenol and zearalenone mycotoxicoses. Mycopathology 163: 81-90.

Saharan, V., Sharma, G., Yadav, M., Choudhary, M.K., Sharma, S.S., Pal, A., Raliya, R., Biswas, P. 2015. Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biology Macromolecules 75: 346-53.

Santosh, K., Joonseok, K., Hyerim, K., Gupta, M.K., Dutta, P.K. 2012. A new chitosan thymine conjugates: synthesis, characterization and biological activity. International Journal of Biology Macromolecules 50 (3): 493-502.

Singh, J., Tripathi, N.N. 1999. Inhibition of storage fungi of blackgram (vigna mungo) by some essential oils. Flavour Fragrance Journal 14: 1-4.

Tang, Z.X., Qian, J.Q, Shi, L.E. 2007. Preparation of chitosan nanoparticles as carrier for immobilized enzyme. Applied Biochemistry and Biotechnology 136(1): 77-96.

Tao, W., Xiao-Kang, Z., Xu-Ting, X., Da-Yang, W. 2012. Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydrate Polymer 88: 75-83.

Thanh-Sang V, Jung-Ae K, Dai-Hung N, Chang-Suk K, Se-Kwon K. 2012. Protective effect of chitosan oligosaccharides against FcɛRI-mediated RBL-2H3 mast cell activation. Process Biochemistry 47: 327-330.

Venkataramana, M., Nayaka, S.C., Anand, T., Rajesh, R., Aiyaz, M., Divakara, S.T., Murali, H.S., Prakash, H.S., Lakshmana, Rao. P.V. 2014. Zearalenone induced toxicity in SHSY-5Y cells: the role of oxidative stress evidenced by N-acetyl cysteine. Food and Chemical Toxicology 65: 335-342.

Xia, W., Liu, P., Zhang, J., Chen, J. 2011. Biological activities of chitosan and chitooligo-saccharides. Food Hydrocolloids 25: 170-179.

Xing, K., Shen, X., Zhu, X., Ju, X., Miao, X., Tian, J., Feng, Z., Peng, X., Jiang, J., Qin, S. 2016. Synthesis and in vitro antifungal efficacy of oleoyl-chitosannanoparticles against plant pathogenic fung. International Journal of Biological Macromolecules 82: 830-836.

Yong, L., Yongzhen, L., Mingzhe, L., Puwang, L., Lei, W. 2011. Preparation and characterization of novel curdlan/chitosan blending membranes for antibacterial applications. Carbohydrate Polymer 84: 952-959.

Zinedine, A., Soriano, J.M., Molto, J.C., Manes, J. 2007. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food and Chemical Toxicology 45(1): 1-18.




How to Cite

Abdel-Aliem, H. A., Gibriel, A. Y., Rasmy, N. M. H., Sahab, A. F., El-Nekeety, A. A., & Abdel-Wahhab, M. A. (2019). Antifungal efficacy of chitosan nanoparticles against phytopathogenic fungi and inhibition of zearalenone production by Fusarium graminearum. Comunicata Scientiae, 10(3), 338–345.



Original Article