Chlorophyll fluorescence as a tool to select salinity-tolerant cowpea genotypes
DOI:
https://doi.org/10.14295/cs.v10i2.3012Abstract
The use of saline water reduces the growth and productivity of crops, so the need for techniques that make possible the use of this resource such as the use of salinity tolerant genotypes and efficient selection methods are of great importance. Thus, this study aimed to evaluate the tolerance of cowpea (Vigna unguiculata L. Walp.) genotypes to salt stress, through the chlorophyll fluorescence analysis. The experiment was conducted in a protected environment at the Federal University of Campina Grande, Paraíba, Brazil, using a completely randomized design in a 2 x 10 factorial arrangement, with three replications, consisting of two levels of irrigation water salinity (0.6 and 5.1 dS m-1) and ten cowpea genotypes: (G1: MNCO1-649F-2-1, G2: MNCO3-736F-2, G3: PINGO DE OURO-1-2, G4: BRS GURGUÉIA, G5: BRS MARATAOÃ, G6: MNCO2-676F-3, G7: MNCO2-683F-1, G8: MNCO3-737F-5-4, G9: MNCO3-737F-5-9, and G10: BRS TUMUCUMAQUE). The stem length, stem diameter, SPAD index, and chlorophyll fluorescence transients were evaluated. The G2 and G4 genotypes had the lowest reductions in the growth, stem diameter, initial fluorescence, and primary and maximum photochemical efficiency of PSII, proving to be tolerant to salinity. Chlorophyll fluorescence is a tool that can be used in the selection of salinity-tolerant cowpea genotypes.
Downloads
References
Aquino, J.P.A., Bezerra, A.A.C., Alcântara Neto, F., Lima, C.J.G.S., Sousa, R.R. 2017. Morphophysiological responses of cowpea genotypes to irrigation water salinity. Revista Caatinga 30:1001-1008.
Araújo, E.D., Melo, A.S., Rocha, M.S., Carneiro, R.F., Rocha, M.M. 2017. Genotypic variation on the antioxidative response of cowpea cultivars exposed to osmotic stress. Revista Caatinga 30: 928-93
Ayers, R.S., Westcot, D.W. 1999. A qualidade de água na agricultura. 2.ed. Campina Grande: UFPB. 153p. (Estudos FAO. Irrigação e Drenagem, 29). Tradução de Gheyi, H.R., Medeiros, J.F., Damasceno, F.A.V.
Azevedo Neto, A.D., Pereira, P.P.A., Costa, D.P., Santos A.C.C. 2011. Fluorescência da clorofila como ferramenta possível para a seleção de tolerância à salinidade em girassol. Revista Ciência Agronômica 42: 893-897.
Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. 2008. Annual Review of Plant Biology 113: 59-89.
Brito, M.E.B., SÁ, F.V.S., Soares Filho, W.D.S., Silva, L.D.A., Fernandes, P.D. 2016. Gas exchange and chlorophyll fluorescence of citrus rootstock varieties under salt stress. Revista Brasileira de Fruticultura 38: 1-8.
Cavalcante, L. F., Vieira, M. S., Santos, A. F., Oliveira, W. M., Nascimento, J. A. M. 2010. Água salina e esterco bovino líquido na formação de mudas de goiabeira cultivar Paluma. Revista Brasileira de Fruticultura 32: 251-261.
Freire, J.L.O., Dias, T.J., Cavalcante, L.F., Fernandes, P.D., Neto, A.J.L. 2014. Rendimento quântico e trocas gasosas em maracujazeiro amarelo sob salinidade hídrica, biofertilizante e cobertura morta. Revista Ciência Agronômica 45: 82- 91.
Kalaji, H.M., Govindjee, BOSA, K., Koscielniak, J., Zuk-Gołaszewska, K. 2011. Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany 73:64-72.
Koyro, H., Hussaina, T., Huchzermeyerc, B., Khana, M.A. 2013. Photosynthetic and growth responses of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations. Environmental and Experimental Botany 91: 22-29.
Maxwell C., Johnson G.M. 2000. Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany 51: 659-668.
Melo, H.F.D., Souza, E.R.D., Duarte, H.H., Cunha, J.C., Santos, H.R. 2017a. Gas exchange and photosynthetic pigments in bell pepper irrigated with saline water. Revista Brasileira de Engenharia Agrícola e Ambiental 21: 38-43.
Melo, H.F.D., Souza, E.R.D., Cunha, J.C. 2017b. Fluorescence of chlorophyll a and photosynthetic pigments in Atriplex nummularia under abiotic stresses. Revista Brasileira de Engenharia Agrícola e Ambiental 21: 232-237.
Novais, R.J., Neves, J.C.L., Barros, N.F. 1991. Ensaios em ambiente controlado. In: Oliveira, A.J., Garrido, W.E., Araújo, J.D., Lourenço, L. Métodos de pesquisa em fertilidade do solo. Brasília: Embrapa189-254.
Oliveira, W.J., Souza, E.R., Santos, H.R.B., Silva, E.F.F., Duarte, H.H.F., Melo, D.V.M. 2018. Fluorescência da clorofila como indicador de estresse salino em feijão caupi. Revista Brasileira de Agricultura Irrigada 12: 2592-2603.
Pereira, T.S., Lima, M.D.R., Paula, L.S., Lobato, A.K.S. 2016. Tolerance to water deficit in cowpea populations resulting from breeding program: detection by gas exchange and chlorophyll fluorescence. Indian Journal of Plant Physiology 21: 171-178.
Qados, A.M.A. 2011. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of the Saudi Society of Agricultural Sciences 10: 7-15.
Richards, L.A. 1954. Diagnosis and improvement of saline and alkali soils. Washington D.C.: U.S. Salinity Laboratoy. 160p.
Sá, F.V.S., Paiva, E.P., Torres, S.B., Brito, M.E.B., Nogueira, N.W., Frade, L.J.G., Freitas, R.M.O. 2016. Seed germination and vigor of different cowpea cultivars under salt stress. Comunicata Scientiae 7: 450-455.
Santos, J.B., Gheyi, H.R., de Lima, G.S., Xavier, D.A., Cavalcante, L.F., Centeno, C. R.M. 2016. Morfofisiologia e produção do algodoeiro herbáceo irrigado com águas salinas eadubado com nitrogênio. Comunicata Scientiae 7: 86-96.
Sousa, G.G., Araújo Viana, T.V., Lacerda, C.F., Azevedo, B.M., Silva, G.L., Costa, F.R.B. 2014. Estresse salino em plantas de feijão-caupi em solo com fertilizantes orgânicos. Revista Agro@mbiente on-line 8: 359-367.
Downloads
Published
How to Cite
Issue
Section
License
All articles published may be reproduced or utilized in any form or by any means whether specified Comunicata Scientiae, author(s), volume, pages and year. The authors are responsible for all the statements and concepts contained in the article.