Anaerobic biodegradation of cassava wastewater under different temperatures and inoculums


The production of starch generates, as a by-product, the cassava wastewater (manipueira), which can be treated by anaerobic digestion to provide biogas and minimize its polluting potential. The most commonly utilized biomass in the anaerobic digestion is the anaerobic sludge. The literature presents, as an alternative to sludge, bovine manure and ruminal fluids, being scarce the studies with the cassava wastewater. This research evaluated the influence of temperature on the microbial ability of cattle and goat rumen in anaerobically biodegrading the manipueira in substitution to the anaerobic sludge. The cattle and goat rumen specific methanogenic activities (SMA) were compared with that of the anaerobic sludge. Subsequently, by using the inoculum which had the best SMA results, cassava wastewater biodegradability tests were performed, investigating the kinetics of the organic matter removal and methane production at 32 ° C and 39 ° C. The bovine rumen presented better results in the SMA (0,315 g COD-CH4 g VSS.d-1) and methane production (1,026 mL). The temperature of 32 °C did not influence the activity of bovine ruminal inoculum as the kinetics of the biodegradation of the manipueira did not differ for the evaluated temperatures (0.1799 d-1 at 32°C and 0.1781 d-1 at 39°C). Bovine rumen achieved glucose reduction of 76% and 80% and methane yield of 77% and 79% for the tests at 32°C and 39°C, respectively. It is inferred that this type of inoculum might be used in reactors of anaerobic digestion processes for the treatment of the cassava wastewater at the ambient temperature of the semiarid region.


Download data is not yet available.

Author Biographies

Paula Tereza de Souza Silva, Empresa Brasileira de Pesquisa Agropecuária-Embrapa Semiárido
Laboratório de Agroambiental
Patricia Silva Barbosa, Universidade Federal do Vale do São Francisco
Colegiado de Engenharia Agrícola e Ambiental
Nayara Evelyn Montefusco, Universidade Federal do Vale do São Francisco
Colegiado de Engenharia Agrícola e Ambiental


Akutsu, Y., Leeb, Dong-yeol, Lic, Yu-You, Noikee, T. 2009. Hydrogen production potentials and fermentative characteristics of various substrates with different heat-pretreated natural microflora. International Journal of Hydrogen Energy 34: 5365-5372.

Amorim, S.M., Kato, M. T., Florencio, L., Gavazza, S.P. 2013. Influence of Redox Mediators and Electron Donors on the Anaerobic Removal of Color and Chemical Oxygen Demand from Textile Effluent. Clean 41: 928-933.

Anyanwu C.N., Ibeto, C.N., Ezeoha, S.L., Ogbuagu, N.J. 2015. Sustainability of cassava (Manihot esculenta Crantz) as industrial feedstock, energy and food crop in Nigeria. Renew. Energy 81: 745-752.

Aquino, S., Chernicharo, C.A.L., Foresti,E., Santos, M.L.F., Monteggia, L. O. 2007. Metodologias para determinação da Atividade Metanogênica Específica (AME) em lodos anaeróbios. Revista de Engenharia Sanitária e Ambiental 12: 192-201.

Astals, S., Esteban-Gutiérrez, T., Fernández-Arévalo, T., Aymerich, E., Gracía-Heras, J. L., Mata-Alvarez, J. 2013. Anaerobic digestion of seven deferent sewage Sludge: A biodegradability and modelling study. Water Research 47: 6033-6043.

Baba, Y., Tada, C., Fukuda, Y., Nakai, Y. 2013. Improvement of methane production from waste paper by pretreatment with rumen fluid. Bioresource Technology 128: 94 – 99.

Bertolino, S.M., Carvalho, C.F., Aquino, S.F. 2008. Characterization and biodegradability of wastewater produced in university campus Química – UFV. Engenharia Sanitária e Ambiental 13: 271-277. http: //

Budiyono, B., Widiasa, I. N., Johari, S., Sunarso, S. 2009. Influence of Inoculum Content on Performance of Anaerobic Reactors for Treating Cattle Manure using Rumen Fluid Inoculum. International Journal of Engineering and Technology 1: 109-116.

Chernicharo, C.A. de L. 2007. Princípios do Tratamento Biológico de Águas Residuárias. Reatores anaeróbios. Departamento de Engenharia Sanitária e Ambiental. Belo Horizonte, Brasil. 380p.

Ding, H.B., Wang, J.Y. 2008. Responses of methanogenic reactor to different fractions of fermentative hydrogen production in a 2-phase anaerobic digestion system. International Journal of Hydrogen Energy 33: 6993 - 7005.

Elbeshbishy, E., Hafez, H., Nakhla, G. 2010. Enhancement of biohydrogen producing using ultrasonication. International Journal of Hydrogen Energy 35: 6184 – 6193.

Field,J. A., Lettinga, G., Geurts, M. 1987. The Methanogenic Toxicity and Anaerobic Degradability of Potato Starch Wastewater Phenolic Amino Acids. Biological Wastes 21: 37-54.

Florêncio, L., Pavel, J., Field, J.A., Lettinga, G. 1993. Effect of Cobalt on the Anaerobic Degradation of Methanol. Journal Fermentation and Bioengineering 75: 368-374.

Gerardi, M. H. 2006. Wastewater Bacteria. John Wiley & Sons, Inc. Hoboken, New Jersey. 255p.

Hook, S.E., Wright, A.D.G., Mcbride, B.W. 2010. Methanogens: Methane Producers of the Rumen and Mitigation Strategies. Archaea 1: 1-11.

Hu, Z. H, Yu, H. Q., Yue, Z. B., Harada, H., Li, Y.Y. 2007. Kinetic analysis of Anaerobic digestion of cattail by rumen microbes in a modified UASB reactor. Biochemistry Engineering Journal 37: 219-225.

Intanoo, P., Rangsanvigit, P., Malakul, P., Chavadej, S. 2014. Optimization of Separate Hydrogen and Methane Production from Cassava Wastewater using Two-Stage Upflow Anaerobic Sludge Blanket Reactor (UASB) system under Thermophilic Operation. Bioresource Technology 173: 256-265.

Intanoo, P., Chaimongkol, P., Chavadej, S. 2016. Hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactors (UASB) with an emphasis on maximum hydrogen production. International Journal of Hidrogen Energy 41: 6107-6114.

Kaparaju, P., Serrano, M., Irini A. I. 2010. Optimization of biogas production from wheat straw stillage in UASB reactor. Applied Energy 87: 3779 – 3783.

Kuczman, O., Tavares, M. H. F., Gomes, S. D., Guedes, L. P. C., Grisotti, G. 2014. Cassava starch extraction effluent treatment in a one phase tubular horizontal pilot reactor with support medium. Engenharia Agrícola 34: 1270-1282.

Lucena, R. M., Gavazza, S., Florêncio, L., Kato, M. T., Motais Jr, M. A. 2011. Study of the microbial diversity in a full-scale UASB reactor treating domestic wastewater. World Journal Microbiology Biotechnology 27: 2893-2902.

Metcalf; Eddy. 2003. Wastewater engineering: treatment and reuse. McGraw-Hill, New York, USA. 1771 p.

Nasr, M., Tawfik, A., Ookawara, S., Suzuki, M. 2013. Biological hydrogen production from starch wastewater using a novel Up-flow Anaerobic Staged reactor. BioResources 8: 4951-4968.

Okudoh, V., Trois, C., Workneh, T., Schmidt, S. 2014. The potential of cassava

biomass and applicable technologies for sustainable biogas production in South

Africa: a review. Renewable and Sustainable Energy Reviews 39: 1035–1052.

Rincón, B., Borja, R., Martín, M.A., Martín, A. 2009. Evaluation of the methanogenic step of a two-stage anaerobic digestion process of acidified olive mill solid residue from a previous hydrolytic–acidogenic step. Waste Management 29: 2566-2573.

Rincón, B., Borja, R., Martín, M.A., Martín, A. 2010. Kinetic study of the methanogenic step of a two-stage Anaerobic digestión process treating olive mil solid residue. Chemical Engineering Journal 160: 215-219.

Sánchez, A.S., Silva, Y.L., Kalid, R.A., Cohim, C., Torres E.A. 2017. Waste bio-refineries for the cassava starch industry: New trends and review of alternatives. Renewable and Sustainable Energy Reviews 73: 1265–1275.

Schneiders, D., Silva, J. D., Till, A., Lapa, K. R., Pinheiro, A. 2013. Atividade metanogênica específica (AME) de lodos industriais provenientes do tratamento biológico aeróbio e anaeróbio. Ambi-Agua 8: 135-145.

Souto, T.F., Aquino, S.F., Silva, S.Q., Chernicharo, C.A.L. 2010. Influence of incubation conditions on the specific methanogenic activity test. Biodegradation 21: 411-424.

Sun, L., Shungang, W., Zebin Yu a, Yinghui, W., Shuangfei, W. 2012. Anaerobic biological treatment of high strength cassava starch wastewater in a new type up-flow multistage anaerobic reactor. Bioresource Technology 104: 280–288.

Tähti, H., Kaparaju, P., Rintala, J. 2013. Hydrogen and methane production in extreme thermophilic conditions in two-stage (Upflow Anaerobic Sludge bed) UASB reactor system. International Journal of Hydrogen Energy 38: 4997-5002.

Teixeira, A.R., Chernicharo, C.A.L., Aquino, S. F. 2008. Influência da redução do tamanho de partículas na taxa de hidrólise de esgoto bruto doméstico. Engenharia Sanitária e Ambiental 13: 405-415.

Thanwised, P., Wirojanagud, W., Reungsang, A. 2012. Effect of hydraulic retention time on hydrogen production and chemical oxygen demand removal from tapioca wastewater using anaerobic mixed cultures in anaerobic baffled reactor (ABR). International Journal of Hydrogen Energy 37: 15503-15510.

Ubalua, A.O. 2007. Cassava wastes: treatment options and value addition alternatives. African Journal of Biotechnology 6: 2065-2073.

Wang, W., Xie, L., Luo, G., Zhou, Q., Lu, Q. 2012. Optimization of biohydrogen and methane recovery within a cassava ethanol wastewater/waste integrated management system. Bioresource Technology 120: 165-172.

Ward, A.J., Hobbs, P.J., Holliman, P.J., Jones, D. L. 2008. Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology 99: 7928-7940.

Wei, J., Liu, Zuo-Tao, Zhang, X. 2010. Biohydrogen production starch wastewater and application in fuel cell. International Journal of Hydrogen Energy 35: 2949-2952.

Zhang, M, Xie, L., Yin, Z. Khanal, S.K., Zhou, Q. 2016. Biorefinery approach for cassava-based industrial wastes: Current status and opportunities. Bioresource Technology 215: 50–62.

How to Cite
Amorim, M. C., Silva, P. T., Barbosa, P., & Montefusco, N. E. (2019). Anaerobic biodegradation of cassava wastewater under different temperatures and inoculums. Comunicata Scientiae, 10(1), 65-76.
Original Article