Seed priming with sodium nitroprusside attenuates the effects of water deficit on soybean seedlings

Authors

  • Marina Alves Gavassi Universidade Estadual Paulista “Júlio de Mesquita Filho”, Instituto de Biociências, Departamento de Botânica. Avenida 24 A, 1515, Bela Vista, 13506-900 - Rio Claro - SP, Brazil
  • Lucas Aparecido Gaion Universidade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Biologia Aplicada à Agropecuária. Via de Acesso Prof. Paulo Donato Castellane, s/n Rural. 14884 900 Jaboticabal – SP, Brazil
  • Carolina Cristina Monteiro Universidade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Biologia Aplicada à Agropecuária. Via de Acesso Prof. Paulo Donato Castellane, s/n Rural. 14884 900 Jaboticabal – SP, Brazil
  • Joel Cabral Santos Universidade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Biologia Aplicada à Agropecuária. Via de Acesso Prof. Paulo Donato Castellane, s/n Rural. 14884 900 Jaboticabal – SP, Brazil
  • Rogério Falleiros Carvalho Universidade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Biologia Aplicada à Agropecuária. Via de Acesso Prof. Paulo Donato Castellane, s/n Rural. 14884 900 Jaboticabal – SP, Brazil

DOI:

https://doi.org/10.14295/cs.v10i1.2842

Abstract

Considering that water deficit is one of the main environmental factors responsible for low soybean yield and that nitric oxide (NO) has been shown to be a fundamental part of plant defense signaling during stress, the aim of the present study was to evaluate the effect of seed priming with nitric oxide on the induction of water deficit tolerance during the initial development of soybean. Thus, seeds were treated with 0 (water only), 50, 100 or 250 μmol.L-1 sodium nitroprusside for 6 hours. Additionally, untreated seeds were used. After drying, the seeds were placed in containers filled with a commercial substrate mixture and vermiculite and irrigated to 100% and 50% field capacity. Biometric and biochemical evaluations (pigment and proline contents) were performed after 14 days. It was concluded that pretreatment of soybean seeds with 50 to 250 μmol.L-1 SNP attenuated the effects of water deficit on stem growth, leaf area, and shoot dry matter and induced carotenoid biosynthesis. The accumulation of proline in the leaves was pronounced in the treatments with 100 and 250 μmol.L-1 SNP, while 100 μmol.L-1 SNP induced proline accumulation in the roots.

Downloads

Download data is not yet available.

Author Biographies

Marina Alves Gavassi, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Instituto de Biociências, Departamento de Botânica. Avenida 24 A, 1515, Bela Vista, 13506-900 - Rio Claro - SP, Brazil

Departamento de Botânica

Lucas Aparecido Gaion, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Biologia Aplicada à Agropecuária. Via de Acesso Prof. Paulo Donato Castellane, s/n Rural. 14884 900 Jaboticabal – SP, Brazil

Departamento de Biologia Aplicada à Agropecuária

Carolina Cristina Monteiro, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Biologia Aplicada à Agropecuária. Via de Acesso Prof. Paulo Donato Castellane, s/n Rural. 14884 900 Jaboticabal – SP, Brazil

Departamento de Biologia Aplicada à Agropecuária

Joel Cabral Santos, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Biologia Aplicada à Agropecuária. Via de Acesso Prof. Paulo Donato Castellane, s/n Rural. 14884 900 Jaboticabal – SP, Brazil

Departamento de Biologia Aplicada à Agropecuária

Rogério Falleiros Carvalho, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Biologia Aplicada à Agropecuária. Via de Acesso Prof. Paulo Donato Castellane, s/n Rural. 14884 900 Jaboticabal – SP, Brazil

Departamento de Biologia Aplicada à Agropecuária

References

Arasimowicz-Jelonek, M., Floryszak-Wieczorek, J., Kubis J. 2009. Involvement of nitric oxide in water stress-induced responses of cucumber roots. Plant Science 177(6): 682-690.

Bates, L.S., Waldren, R.P., Teare, I.D. 2013. Rapid determination of free proline for water-stress studies. Plant and Soil 39(1): 205-207.

Bruce, T.J.A., Matthes, M.C., Napier, J.A Pickett, J.A. 2007 Stressful memories of plants: evidence and possible mechanisms. Plant Science 173(6): 603–608.

Cho, S., Kim, Y.H., Anderson, A.J. 2013. Nitric oxide and hydrogen peroxide production are involved in systemic drought tolerance induced by 2R,3R-butanediol in Arabdopsis thaliana. Plant Pathology Journal 29(4): 427-434.

Corpas, F.J., Barroso, J.B. Functions of nitric oxide (NO) in roots during development and under adverse stress conditions. Plants 4: 240-252.

Correa-Aragunde, N., Graziano, M., Lamattina, L. 2004. Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218(6): 900–905.

Egbichi, I., Keyster, M., Ludidi, N. 2014. Effect of exogenous application of nitric oxide on salt stress responses of soybean. South African Journal of Botany 90: 131–136.

Fan, Q., Liu, J. 2012. Nitric oxide is involved in dehydration/drought tolerance in Poncirus trifoliata seedlings through regulation of antioxidant systems and stomatal response. Plant Cell Reports 31: 145–154.

Fan, H.F., Du, C.X., Ding, L., Xu, Y.L. 2014. Exogenous nitric oxide promotes waterlogging tolerance as related to the activities of antioxidant enzymes in cucumber seedlings. Russian Journal of Plant Physiology 61(3): 366-373.

Furlan, A., Llanes, A., Luna, V., Castro, S. 2012. Physiological and biochemical responses to drought stress and subsequent rehydration in the symbiotic association peanut - Bradyrhizobium sp. Agronomy n. 2012:318083.

Gill, S.S., Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemestry 48: 909-930.

Hasanuzzaman, M., Nahar, K., Alam, M., Fujita, M. 2012.

Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (Triticum aestivum L.) seedlings by modulating the antioxidant defense and glyoxalase system. Australian Journal of Crop Science 6(8): 1314-1323.

Hasanuzzaman, M., Fujita, M. 2013. Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicollogy 22(3): 584-596.

HATAMZADEH, A, Nalousi, M., Ghasemnezhad, M., Biglouei, M.H. 2015. The potential of nitric oxide for reducing oxidative damage induced by drought stress in two turfgrass species, creeping bentgrass and tall fescue. Grass and Forage Science 70(3): 538-548.

IBRAHIM, E. A. 2016. Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology 192: 38-46.

Jhanji, S., Setia, R.C., Kaur, N., Kaur, P., Setia, N. 2012. Role of nitric oxide in cadmium-induced stress on growth, photosynthetic components and yield of Brassica napus L. Journal of Environmental Biology 33(6): 1027-1032.

Jiao, C., Yang, R., Zhou, Y., Gu, Z. 2016. Nitric oxide mediates isoflavone accumulation and the antioxidant system enhancement in soybean sprouts. Food Chemistry 204: 373–380.

Jisha, K.C., Vijayakumari, K., Puthur, J.T. 2013. Seed priming for abiotic stress tolerance: an overview. Acta Physiologiae Plantarum 35: 1381–1396.

Kausar, F., Shahbaz, M, Ashraf, M. 2013. Protective role of foliar-applied nitric oxide in Triticum aestivum under saline stress. Turkish Journal of Botany 37: 1155-1165.

Kering, M.K., Zhang, B. 2015. Effect of priming and seed size on germination and emergence of six food-type soybean varieties. International Journal of Agronomy n. 859212.

Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148: 350-382.

Liu, X., Wang, L., Liu, L., Gou, Y., Ren, H. 2011. Alleviating effect of exogenous nitric oxide in cucumber seedling against chilling stress. African Journal of Biotechnology 10(21): 4380-4386, 2011.

Mahmoudi, H., Massoud, R.B., Baatour, O., Tarchoune, I., Salah, I.B., Nasri, N., Abidi, W., Kaddour, R., Hannoufa, A., Lachaâl, M., Ouergui, Z. 2012. Influence of different seed priming methods for improving salt stress tolerance in lettuce plants. Journal of Plant Nutrition 35(12): 1910-1922.

Mafakheri, A., Siosermardeh, A., Bahramnejad, B., Struik, P.C., Sohrabi, Y. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal Crop Science 4(8): 580-585.

Pagnussat, G.C., Simontacchi, M., Puntarulo, S., Lamattina, L. 2002. Nitric oxide is required for root organogenesis. Plant Physiology129(3): 954–956.

Pires, R.M.O. 2016. Action of nitric oxide in sesame seeds (SesamumindicumL.) submitted to stress by cadmium. Journal of Seed Science 38(1): 022-029.

Prom-U-Tay, C., Rerkarsem, B., Yazici, A., Cakmak, I. 2012. Zinc priming promotes seed germination and seedling vigor of rice. Journal of Plant Nutrition and Soil Science175: 482–488.

Sadeghipour, O. 2016. Pretreatment with nitric oxide reduces lead toxicity in cowpea (Vigna unguiculata [L.] Walp.). Archieves of Biological Sciences Belgrade 68(1): 165-175.

Shallan, M.A., Hassan, H.M.M., Namich, A.A.M., Ibrahim, A.A. 2012. A Effect of sodium nitroprusside, putrescine and glycine betaine on alleviation of drought stress in cotton plant. American-Eurasian Journal of Agriculture & Environment Science 12(9): 1252-1265.

Sharma, P., Jha, A.B., Dubey, R.S., Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany n. 217037.

Shi, J., Gao, L., Zuo, J., Wang, Q., Wang, Q., Fan, L. 2016. Exogenous sodium nitroprusside treatment of broccoli florets extends shelf life, enhances antioxidant enzyme activity, and inhibits chlorophyll-degradation. Postharvest Biologyand Technology 116: 98-104.

Silva, T.A., Silva, P.B., Silva, E.A.A., Nakagawa, J., Cavariani, C. 2016 Condicionamento fisiológico de sementes de soja, componentes de produção e produtividade. Ciência Rural 46(2): 227-232.

Singh, V.P., Srivastava, P.K., Prasad, S.M. 2013. Nitric oxide alleviates arsenic-induced toxic effects in ridged Luffa seedlings. Plant Physiology and Biochemistry 71: 155-163.

Sneideris, L.C., Gavassi, M.A., Campos, M.L., C’Amico-Damião, V., Carvalho, R.F. 2015. Effects of hormonal priming on seed germination of pigeon pea under cadmium stress. Anais da Academia Brasileira de Ciências 87(3): 1847-1852.

Song, J., Xing, S., Chen, Min, Wang, B., 2009. Effects of nitric oxide and nitrogen on seedling emergence, íon accumulation, and seedling growth under salinity in the euhalophyte Suaeda salsa. Journal of Plant Nutrition and Soil Science 172: 544–549.

Sun, Y., Sun, Y.J., Wang, M.T., Li, X.Y., Guo, X., Hu, R., Ma, j. 2010. Effects of seed priming on germination and seedling growth under water stress in rice. Acta Agronomica Sinica 36(11): 1931–1940.

Wahid, A., Perveen, M., Gelani, S., Basra, S.M. 2007. Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. Journal of Plant Physiology 164: 283–294.

Wang, L., Yang, X., Ren, Z., Hu, X., Wang, X. 2015. Alleviation of photosynthetic inhibition in copper-stressed tomatoes through rebalance of ion content by exogenous nitric oxide. Turkish Journal of Botany 39(1): 10-22.

Wen, D., Gong, B., Sun, S., Liu, S., Wang, X., Ewi, M., Yang, F., Li, Y., Shi, Q. 2016. Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling. Frontiers in Plant Science, doi: 10.3389/fpls.2016.00718.

Young, J. 1991. The photoprotective role of carotenoids in higher plants. Physiologia Plantarum 83(4): 702–708.

Zanotti, R.F., Lopes, J.C., Motta, L.B., Freitas, A.R., Mengarda, L.H.G. 2013. Tolerance induction to saline stress in papaya seeds treated with potassium nitrate and sildenafil citrate. Ciências Agrárias 34(6): 3669-3674.

Zhang, L.P., Mehta, S.K., Liu, Z.P., Yang, Z.M. 2008. Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii. Plant Cell and Physiology 49(3): 411-419.

Zhang, Y.K., Cui, X.M., Yang, S.X, Chen, X.L. 2010. Effects of exogenous nitric oxide on active oxygen metabolism and photosynthetic characteristics of tomato seedlings under cadmium stress. Chinese Journal of Applied Ecology 21(6): 1432-1438.

Zheng, C., Jiang, D., Liu, F., Dai, T., Liu, W., Jing, Q., Cao, W. 2009. Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environmental and Experimental Botany 67: 222–227.

Zimmer-Prados, L. M., Moreira, A.S.F.P., Magalhães, J.R., França, M.G.C. 2014. Nitric oxide increases tolerance responses to moderate water deficit in leaves of Phaseolus vulgaris and Vigna unguiculata bean species. Physiology and Molecular Biology of Plants 20(3): 295-301.

Downloads

Published

2019-04-17

How to Cite

Gavassi, M. A., Gaion, L. A., Monteiro, C. C., Santos, J. C., & Carvalho, R. F. (2019). Seed priming with sodium nitroprusside attenuates the effects of water deficit on soybean seedlings. Comunicata Scientiae, 10(1), 176–184. https://doi.org/10.14295/cs.v10i1.2842

Issue

Section

Original Article