Colletotrichum species associated with atemoya anthracnose in northeast Brazil

Jockeliny Mayara Câmara dos Santos¹*⁽⁰⁾, Jaqueline Figueiredo de Oliveira Costa¹⁽⁰⁾, Jackeline Laurentino da Silva¹⁽⁰⁾ Tiago Silva Lima¹⁽⁰⁾, Taciana Ferreira dos Santos¹⁽⁰⁾, Iraildes Pereira Assunção¹⁽⁰⁾, Gaus Silvestre de Andrade Lima¹⁽⁰⁾

> ¹Universidade Federal de Alagoas, Rio Largo - AL, Brasil *Corresponding author, e-mail: jaquelinefigueredo@hotmail.com

Abstract

Anthracnose, caused by *Colletotrichum* spp., is an important disease of atemoya that can infect and cause damage to different plant organs. The symptoms include foliar anthracnose, flower abortion, branch tip bleaching, and necrotic lesions on fruits. Knowing the etiology of this disease is essential for properly developing management strategies. Therefore, this study aimed to identify *Colletotrichum* species associated with atemoya in the Northeast region of Brazil, based on multi-locus phylogeny and morphological analyses, to better understand the etiology of anthracnose in this plant species. The *Colletotrichum* isolates were obtained from symptomatic leaves and branches of atemoya collected in commercial fields in Vitória da Conquista (Bahia), Palmeira dos Índios and Rio Largo (Alagoas), located in northeast Brazil. The initial analysis of the partial sequences of the GAPDH gene was performed with nineteen *Colletotrichum* isolates were grouped in the gloeosporioides complex and two in the boninense complex. Therefore, eleven isolates were submitted to concatenated phylogenetic analyses with the genes GAPDH, TUB2, and ITS region of the rDNA to confirm the identity of the isolates at the species level. The species *C. theobromicola*, *C. siamense*, *C. fructicola* and *C. karstii* were identified and are associated with atemoya anthracnose in the Northeast region of Brazil.

Keywords: Annonaceae, multi-locus, pathogenicity

Introduction

The Annonaceae family is a pantropical group of trees and shrubs, comprising 2100 species in 129 genera. They are considered one of the oldest existing floral groups, with a basal lineage estimated at 112 million years (Stevens, 2016; Awachere et al., 2018). The Annona genus is considered the most important of the Annonaceae family due to its fruit economic value worldwide. Custard apple (Annona squamosa L.), soursop (Annona muricata L.), cherimoya (Annona cherimola Mill), and atemoya (hybrid A. squamosa x A. cherimola) are the species that stand out in the fresh consumption and the fruit processed market, and also in the bio-compounds production of medicinal, allelopathic or pesticide importance (Lemos, 2014; São José et al., 2014; Liaw et al., 2016).

The atemoya is an interspecific hybrid from the cross between the cherimoya and the custard apple (Lemos, 2014). The hybrid combines interesting traits of

both species with extremely tasty fruits. Among other advantages, the fruit has a lower number of seeds, longer post-harvest shelf-life, absence of cracks, differentiated flavor, and more balanced soluble solids content, arousing the interest of some producers due to the taste and quality similar to that of cherimoya, and superior to the custard apple (Sobrinho, 2014).

Despite the high market demand for atemoya, the productivity in the Northeast region of Brazil is low (2.3 t ha⁻¹), which is attributed to low technology use and inadequate management of diseases (Junqueira & Junqueira, 2014; Lemos, 2014; São José et al., 2014). Among the factors associated with low productivity, anthracnose, caused by *Colletotrichum* spp., is the most important aerial part disease of atemoya (Firmino et al., 2014). Symptoms cause significant damage, such as flower abortion, bleaching of branches tip, and necrotic lesions on the fruits, compromising the plant development

(Takahashi, 2009; Lemos, 2014).

The Colletotrichum genus currently comprises 257 species based on molecular data, which are grouped into 15 species complexes and 14 singleton species (Talhinhas; Baroncelli, 2021). The C. gloeosporioides, C. boninense and C. acutatum species have been associated with atemoya anthracnose in Brazil (Takahashi et al., 2009; Firmino et al., 2014). These studies were based on morphological and molecular characterization, using the ITS-rDNA region and the β -tubulin and elongation factor 1a genes (Takahashi et al., 2009; Firmino et al., 2014). However, the identification of the Colletotrichum genus has been based on more accurate studies using a multi-locus phylogenetic analysis combined with recognized phenotypic characters such as morphology, pathogenicity, and cultural characteristics (Hyde et al., 2014; Costa et al., 2019; Dammet al., 2019; Jayawardena et al., 2021; Talhinhas; Baroncelli, 2021; Wanget al., 2021).

Nevertheless, studies on the diversity of *Colletotrichum* spp. associated with atemoya in Brazil are still scarce. Therefore, this study aimed to identify *Colletotrichum* spp. associated with atemoya in the Northeast region of Brazil through multi-locus phylogeny and morphological analyses, and clarify the etiology of atemoya anthracnose in Brazil.

Materials and methods

Sample collection, isolation, and preservation of Colletotrichum isolates

The Colletotrichum isolates were obtained from leaves and branches of atemoya with anthracnose symptoms in commercial fields in Vitória da Conquista (Bahia), Palmeira dos Índios and Rio Largo (Alagoas), located in the Northeast region of Brazil. The leaves and branches samples were washed in running tap water and dried on paper towels. Fragments from a diseased and healthy transition lesion were cut, superficially disinfected in 70% alcohol for 30 seconds and 1% sodium hypochlorite for 1 minute, and washed twice in sterile distilled water (ADE). The fragments were transferred to Petri dishes containing potato-dextrose-agar (PDA) growth medium and incubated at 25 °C until fungal hyphae growth, where disks from the edges of the colonies were transferred to new Petri dishes containing PDA medium. The isolates were previously identified morphologically after sporulation as belonging to the Colletotrichum genus (Sutton, 1992; Weir et al., 2012; Damm et al., 2019).

Monosporic isolates were obtained from serial dilution of a spore suspension, up to 10^{-5} of the initial concentration. A 20 μ L aliquot was evenly distributed into Petri dishes containing WA medium (water agar)

with a Drigalski loop. After 24 hours, one germinated spore of each isolate was transferred to new Petri dishes containing PDA medium. The monosporic isolates were preserved by the Castellani method (1967) on Eppendorf tubes and by the freezing storage method in filter paper strips (Alfenas & Mafia, 2007) until the pathogenicity, morphological, cultural, and molecular characterization tests. Subsequently, they were deposited in the Collection of Plant pathogens of the Universidade Federal de Alagoas (COUFAL).

In vitro and in vivo pathogenicity and virulence tests

The isolates were tested for pathogenicity and virulence on detached leaves and branches of the atemoya "Gefner" variety. Each isolate was tested in the organ from which it was obtained. Asymptomatic leaves and branches were washed in running water, superficially disinfected in 1% sodium hypochlorite (NaOCI) solution for 3 minutes, washed three times in SDW, and dried with paper towels. Leaves and branches had the epidermis injured immediately before inoculation with a sterilized needle. The inoculation was carried out by adding 30µL of spore suspension (10⁶ conidia/mL) to the surface of each organ. Three replicates for each isolate were used. The control treatment consisted of an aliquot of SDW. Leaves and branches were placed in a gerbox with sterile filter paper moistened with SDW and incubated in a Biochemistry Oxygen Demand (BOD) incubator at 25 °C and 12 h photoperiod. Seven days after inoculation, the lesions were measured in two diametrically opposite directions (cm) with a millimeter ruler.

For the *in vivo* assay, asymptomatic seedlings of atemoya variety "Gefner" were obtained from nurseries accredited in Bahia state. The seedlings were inoculated with PDA culture medium disks containing pathogen structures removed from the edge of sevenday-old colonies. The disks were individually fixed on the leaves' surface, which was previously injured before the inoculation with a sterilized needle. The control treatment consisted of inoculation with disks containing only PDA medium without the pathogen. After inoculation, the seedlings were wrapped in a transparent plastic bag internally moistened with sterilized distilled water to form a moist chamber and kept in a greenhouse at 25 °C and 12 h photoperiod for 48 h. The seedlings were observed daily until the first anthracnose symptoms started to appear.

A completely randomized experimental design was used, with three replicates for each *Colletotrichum* species. In both tests, the pathogen was reisolated to confirm the pathogenicity of the isolates,

according to Koch's postulate (1882).

Molecular characterization of Colletotrichum isolates

The mycelium for DNA extraction of the isolates was obtained through cultivation in Sucrose-Yeast Extract-Asparagine medium (Zauza et al., 2007) for five days, at 25±1 °C, without stirring and 12 h photoperiod. The obtained mycelium was washed in SDW, and the DNA was extracted following the protocol proposed by Doyle & Doyle (1987). Nucleotide sequences of four molecular markers were determined. Firstly, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene using GDF/GDR primers (Templeton et al., 1992) was used for preliminary identification of isolates and assessment of species haplotypic diversity. Subsequently, representatives of each species, based on haplotypes, were amplified with the partial sequences of the β -tubulin genes (TUB2) using the T1/Bt2b primers (O'Donnell & Cigelnik, 1997; Glass & Donaldson, 1995), Mating-type locus MAT1- 2-1 (APN2/MAT-IGS) with primers CgDL F6/DgMAT1_F2 (Rojas et al., 2010) and rDNA Internal transcribed spacer (ITS) region with ITS1/ITS4 (White et al., 1990; Gardes & Bruns, 1993) to ensure greater reliability in the identification and taxonomic resolution of the species within the Colletotrichum genus. The PCR reactions were performed with 10X buffer (3 µL), 50 mM MgCl2 (0.9 µL), 10 mM DNTP (2.4 μ L), 10 μ M of each oligonucleotide (2 μ L), 1U Taq DNA polymerase (0.2 μ L) and DNA (1 μ L, 25ng/ μ L). The final volume of the reactions was adjusted to 30 μ L with autoclaved Milli-Q water.

Thermocycling conditions for the GAPDH gene amplification occurred at an initial denaturation of 95 °C for 4 min, followed by 35 cycles of 30 s at 95 °C, 30 s at 60 °C, and 45 s min at 72 °C, with a final extension of 7 min at 72°C. The annealing temperature differed for TUB2 at 55 °C. For the MAT1-2-1 gene, the initial denaturation started at 95 °C for 3 min, followed by 35 cycles of 30 s at 95 °C, 45 s at 62 °C, and 1 min at 72 °C, with a final extension of 10 min at 72°C. However, for the ITS region, initial denaturation started at 95 °C for 2 min was used, followed by 38 cycles at 95 °C for 1 s, 55 °C for 30 s, 72 °C for 45 s, and a final cycle at 72 °C for 10 min. (Rojas et al., 2010; Weir et al., 2012; Damm et al., 2019). After amplification, the samples were submitted to electrophoresis in a 1.5% agarose gel, stained with ethidium bromide, and observed under UV light. The PCR products were sent for sequencing at Macrogen Inc. (Seoul, South Korea).

Consensus sequences were assembled using the Staden Package software. These were initially compared to the GenBank sequence database using the BLASTn algorithm (https://blast.ncbi.nlm.nih.gov) to determine the species with which they shared the greatest sequence identity. Based on the results of the BLASTn analysis, sequence type isolates and other reference sequences of *Colletotrichum* species available on GenBank for each gene and genomic region were retrieved for phylogenetic analysis (Supplementary Table 1). Multiple sequence alignments were made using the MUSCLE algorithm (Edgar, 2004), implemented in MEGA v.11 (Molecular Evolutionary Genetics Analysis) software (https://www.megasoftware.net) for the datasets.

Bayesian Inference (BI) analyzes were performed with all sequences for the GAPDH gene (data not shown) and multi-locus for the representative isolates of the species (GAPDH, TUB2, MAT1-2-1 and ITS region) for the complex *C. gloeosporioides* and GAPDH, TUB2 and ITS region for the *C. boninense* complex. Nucleotide substitution models were estimated separately for each gene region with Mr. Model test 2.3 (Posada & Buckley, 2004) according to the Akaike Information Criterion (AIC). The clade support of each tree was determined from 1000 bootstrap generations.

BI-based phylogenetic analyzes were inferred in MrBayes v. 3.0 b4 (Ronquist et al., 2012) using the Markov Chain Monte Carlo (MCMC) method at the CIPRES web portal (http://www.phylo.org). Four MCMC chains were conducted simultaneously, starting the trees randomly up to 10 million generations for each dataset. Trees were sampled every 1.000 generations resulting in 10.000 trees. The first 2.500 trees were discarded from the analysis as a burn-in step. The posterior probability values (Rannala & Yang, 1996) were determined from a majority-rule consensus tree with 7,500 remaining trees. The trees were visualized in the FigTree v. 1.4 software(ztree.bio.ed.ac.uk/ software/figtree) and edited in the Inkscape 0.91 software (https://inkscape.org/pt-br/release/inkscape-0.91). The studied sequences were deposited in GenBank (Supplementary Table 1). The C. gloeosporioides (ICMP 17821) was used as the outgroup in the analysis of the C. boninense complex, and the C. boninense (CBS123755) in the analysis of the C. gloeosporioides complex.

Morphological characterization of the Colletotrichum species

Two representatives of each Colletotrichum species identified in the study were selected for morphological characterization.

For the cultural characterization, a disk of the PDA culture medium containing the mycelium was removed from the edge of a seven-day-old colony and transferred individually to the center of new Petri dishes containing 20 ml of synthetic PDA medium. The diameter of the colonies (cm) was evaluated daily, taken from the bottom of the Petri dishes by measuring, in two directions, the perpendicular diameters with a millimeter ruler. The colonies' color, appearance and development of sectors were also evaluated (Weir et al., 2012; Damm et al., 2012). A completely randomized experimental design was used, with five replicates for each isolate, consisting of a Petri dish.

In the morphological characterization the size and shape of 50 conidia and appressoria were analyzed (Dhingra & Sinclair, 1995), these were randomly chosen from colonies grown in PDA medium for seven days. In order to visualize conidia, glass slides were used, where a drop (40 mL) of SDW was deposited together with the spores; and observed under light microscope. To stimulate the formation of appressoria, a drop of conidia suspension was deposited on a sterile glass slide packed in a humid chamber (Petri dish lined with sterile filter paper moistened with SDW) for 24h, to keep the environment humid and allow the formation of appressoria. The length and width of the conidia and appressoria were measured from images captured through a digital camera (Olympus IX2-SLP) coupled to the light microscope at a 400x magnification, projected in a computer monitor, through the Cellsense Standard software (SAMSUNG SDC-415®).

Results and Discussion

Isolates obtaining

A total of nineteen *Colletotrichum* spp. isolates were obtained from leaves and branches of atemoya trees, with anthracnose symptoms, in commercial fields in the states of Alagoas and Bahia, Northeast Brazil.

Molecular characterization of the Colletotrichum isolates

The initial analysis of the partial sequences of the GAPDH gene was performed with Colletotrichum isolates obtained nineteen from atemoya leaves and branches with typical anthracnose symptoms. Ten isolates were obtained from leaves and nine isolates from branches. After comparing the sequences with the GenBank database accessions using the BLASTn algorithm and constructing Bayesian Inference trees, it was possible to group seventeen isolates in the gloeosporioides complex and two in the boninense complex (Data not shown).

After the species identification with the GAPDH gene, eleven isolates were selected and submitted to concatenated phylogenetic analyses with the GAPDH, TUB2, MAT1-2-1 genes, and the ITS region of the rDNA for the gloeosporioides complex (Figure 1) and GAPDH, TUB2 and ITS rDNA region for the boninense complex (Figure 2)

to confirm the species identification.

The concatenated alignment of the gloeosporioides complex showed 1611 characters, of which 194 are parsimoniously informative sites, and 1271 are conserved sites. The loci boundaries in the alignments were: GAPDH: 1-308, ITS: 309-907, TUB2: 908-1629, and ApMat: 1630-2517. The boninense complex showed 1335 characters, of which 180 are parsimoniously informative sites, and 1011 are conserved sites. The loci boundaries in the alignments were: GAPDH: 1-281, ITS: 282-837, and TUB2: 838-1335.

Bayesian Inference concatenated phylogenetic analyses identified four species within two complexes of the *Colletotrichum* genus. Nine isolates showed similarity to species of the *gloeosporioides* complex above 99% for all genes and regions used. The isolates COUFAL0339, COUFAL0341, COUFAL0342, COUFAL0345, and COUFAL0349 were grouped with the C. *theobromicola* species, while the isolates COUFAL0337 and COUFAL0338 were grouped with C. *siamense* and the isolates COUFAL0332 and COUFAL0334 with the C. *fructicola* species.

The phylogenetic analyses of the C. boninense complex isolates included two isolates, COUFAL0335 and COUFAL0336, with well-supported clades with the C. *karstii* species.

Pathogenicity Test

Detached leaves and branches inoculated with the Colletotrichum isolates showed necrotic spots two days after inoculation. The C. fructicola isolated caused the largest lesion (2.56 cm), while the species C. theobromicola caused the smallest lesion (0.68 cm), differing from the other species (**Figure 3** and **Table 1**).

In atemoya seedlings inoculated, the symptoms appeared within the first 48 h after inoculation. The isolate of *C. siamense* caused the largest lesion (7.34 cm), while the *C. theobromicola* isolate caused the smallest lesion (3.15 cm), statistically differing from each other on severity levels (Figure 3 and Table 1).

Morphological and cultural characterization

The evaluated morphological and cultural characteristics of the *Colletotrichum* species, such as size and conidia shape, appressoria, colony aspects, and mycelial growth rate, are shown in Table 1 and Figure 3.

The cultural characteristics of the colonies within the gloeosporioides complex proved to be heterogeneous in the aspect and color of the aerial mycelium. The predominant color was white with changes in tonality in the center and/or on the edge of the colonies, ranging

Figure 1. Multi-locus phylogenetic tree inferred (Bayesian inference) with the GAPDH, TUB2, ApMat and ITS region genes for species of the *Colletotrichum gloeosporioides* complex. Values at nodes indicate posterior probabilities > 0.03. Ex-type isolates are marked with an asterisk. The isolates used in the study are highlighted in bold. The tree was rooted using *Colletotrichum boninense* (CBS 123755) as outgroup.

from pink, light gray, and dark green, with and without concentric rings. The variation in the average growth rate of colonies within the complex ranged from 0.78 to 0.97 mm. day⁻¹. The conidia were hyaline, non-septate, and straight-cylindrical with sharp or rounded tips. The conidia length ranged from 7.85 to 8.56 µm and 2.91 to 3.39 µm in width. Appressoria were predominantly dark brown, with ovoid and irregular shapes. The appressorium length ranged from 4.63 to 5.82 µm and 3.36 to 4.05 µm in width.

In the boninense complex, the isolates showed colony colors ranging from pink with white edges to salmon with concentric rings. The average growth rate within the complex was 0.74 cm.day⁻¹. The conidia were hyaline, non-septate, and straight-cylindrical with sharp or rounded tips. The conidia length was 9.18 μ m and 3.77 μ m in width. Appressoria were predominantly dark brown, with ovoid and irregular shapes. The appressoria length was 6.31 μ m, and 4.19 μ m in width.

Our study aimed to identify *Colletotrichum* species associated with anthracnose disease in atemoya in commercial fields located in the Northeast region of Brazil, considering that this is one of the most important diseases in plants of the *Annonaceae* family, affecting branches, leaves, flowers, and fruits, both in the initial and

Figure 2. Multi-locus phylogenetic tree inferred (Bayesian inference) with the genes GAPDH, TUB2 and ITS region for species of the *Colletotrichum boninense* complex. Values at nodes indicate posterior probabilities > 0.02. Ex-type isolates are marked with an asterisk. The isolates used in this study are highlighted in bold. The tree was rooted with *Colletotrichum gloeosporioides* (ICMP 17821) as outgroup

in more advanced phenological stages, causing severe economic losses to producers (Firmino et al., 2014; Kamei et al., 2014; Costa et al., 2019).

However, despite the great importance of atemoya anthracnose in Brazil, the etiology of this disease remains unclear (Junqueira & Junqueira, 2014). Therefore, the results obtained in this study will fill in some gaps in the knowledge of atemoya anthracnose etiology.

In this study, different species of Colletotrichum were identified as the causal agents of this disease in atemoya leaves and branches using a multi-locus phylogeny analysis approach with the GAPDH, TUB2, MAT1-2-1 genes, and ITS region of rDNA. Together with the morphological and cultural studies, these analyses allowed the identification of four species within two complexes. Three species belong to the gloeosporioides complex (C. theobromicola, C. siamense and C. fructicola), and one belongs to the boninense complex (C. karstii).

Members of the C. gloeosporioides and C. boninense species complex had already been reported in several crops of economic importance around the world (Weir et al., 2012; James et al., 2014; Rodrigues et al., 2014; Silva et al., 2017; Veloso et al., 2018; Costa et

Figure 3. Cultural and morphological aspects of the isolates and field and pathogenicity test symptoms caused Colletotrichum spp.

al., 2019). However, in Brazil, the only study that identified members of the *Colletotrichum* genus associated with atemoya anthracnose was carried out by Firmino et al. (2014), where *C.acutatum* and *C. boninense* species were identified.

Reports of C. theobromicola causing anthracnose in leaves of Annona muricata L. and Annona squamosa L. have been published in Brazil (Costa et al., 2019) and in other Annonaceae species in Mexico (Villanueva-Arce et al., 2005), Panama (Rojas et al., 2010), Colombia (Álvarez et al., 2014) and Japan (Morita et al., 2015). This species is widely distributed in tropical and subtropical regions of the world, infecting a wide diversity of hosts (Tozze Júnior et al., 2010; Álvarez et al., 2014; Chung et al., 2020; Costa et al., 2019; Jayawardena et al., 2021; Soares et al., 2021; Talhinhas; Baroncelli, 2021). In our study, this was the only species observed in atemoya branches and the most frequent species associated with leaves and branches from samples ofall collected areas. However, it was significantly less virulent than the other species, both in vitro and in vivo. Despite being associated with several agronomically important Annonaceae species, there are no reports of Colletotrichum theobromicola infecting atemoya in Brazil.

The second most frequent species associated with anthracnose in the atemoya leaves was *Colletotrichum fructicola*, which was not found on branch samples. This species was the most virulent in the *in vitro* assay. However, it showed virulence levels similar to *C*. *kastii* and *C*. *theobromicola* in the *in vivo* assay. Although being reported in a wide range of hosts such as papaya (*Carica papaya* L.), pepper (*Capsicum frutensens* L.) (Phoulivong et al., 2010), cocao (*Theobromae* cacao L.) (Rojas et al., 2010), apple and strawberry (*Fragaria*

	lesions (cm)	in vivo	3.41 (2.85 – 4.00)	3.85 (3.46 – 4.10)	7.34 (6.23 – 8.73)	3.15 (2.96 – 3.49)
	Diameter of	in vitro	2.56 (2.15 – 2.80)	1.36 (1.10 – 1.65)	1.06 (0.50 – 1.65)	0.68 (0.50 – 0.90)
	Colonies		Pinkish in the center with white edges, presence of conconcentric rings and dense mycelium.	Salmon with concentric rings and dense mycelium.	Color ranging from white to light pink with dense mycelium.	Color varying between gray and green in the center, with white edges, concentric rings, thin mycelium and may or may not have sectors.
	Mycelial growth (mm/dav)		0.78	0.78 0.74 0.97		0.80
oas).	Appressorium (µm)	Width	4.05 (5.87- 3.15)	4.19 (5.07-3.16)	3.36 (3.92-2.64)	4.05 (5.14-3.10)
rersity of Alage		Length	5.82 (6.94-4.80)	6.31 (8.31-4.86)	4.63 (5.82-3.92)	5.17 (9.05-3.85)
e Federal Univ		Format	Cylindrical	Cylindrical	Cylindrical	Cylindrical
hogens of the	Conidia (µm)	Width	3.39 (3.94-2.83)	3.77 (4.17-2.94)	2.91 (3.35-2.49)	2.96 (3.33-3.70)
n of Phytopat		Length	7.85 (8.71-6.53)	9.18 (11.37-7.78)	7.97 (10.37-6.63)	8.56 (10.30-7.36)
COUFAL (Collection)		Species	C. fructicola (COUFAL0332; COUFAL 0334)	C. karstii (COUFAL0335; COUFAL 0336)	C. siamense' (COUFAL0337; COUFAL 0338)	C. theobromicola (COUFAL0342; COUFAL 0345)

vesca L.) (Weir et al., 2012), citrus (*Citrus* spp.) (Peng et al., 2012), grapefruit (*Vitis* sp. L.) (Huang et al., 2013) and Annonaceae species (Costa et al., 2019), this is the first report of *C. fructicola* causing anthracnose in atemoya.

The C. siamense and C. karstii species were represented by only two isolates in atemoya leaves and were not found on branch samples. In the pathogenicity test in vivo, C. siamense was the most virulent species, while in vitro, it was the second less virulent whereas C. karstii behaved as the third most virulent in both tests. There was inconsistency in the virulence of the pathogens in vitro and in vivo. This may be related to several factors, such as favorable environmental conditions for each species, pathogen virulence, and preference for specific plant organs (Costa et al., 2019; Marins et al., 2022). However, in vivotests reflect environmental conditions closer to those observed in the field.

Colletotrichum siamense is one of the main pathogens causing both pre and post-harvest anthracnose in fruits at local markets in Thailand, including Annona reticulata L. (Udayanga et al., 2013). It has a wide geographic distribution and affects numerous host species (Weir et al., 2012; Costa et al., 2019; Jayawardena et al., 2021; Soares et al., 2021; Talhinhas; Baroncelli, 2021). In Brazil, it has been found on Annona muricata and Annona squamosa fields (Costa et al., 2019) and also in other important crops such as Capsicum spp. (Silva et al., 2017), pomegranate (Punica granatum L.) (Silva-Cabral et al., 2020) and Saccharum spp. (Marins et al., 2022).

The C. karstii species was first reported in orchid leaves in China and is considered an important pathogen of the Orchidaceae family (Yang et al., 2012; Jadrane et al., 2012). However, C. karstii has been reported in several fruit trees causing significant economic losses (Damm et al., 2012; Lima et al., 2013; Vieira et al., 2014; Velho et al., 2014). In Annonaceae plants, C. karstii has been reported in cherimoya fruits in Mexico and New Zealand (Damm et al., 2012), in soursop in Colombia (Álvarez et al., 2014), and soursop and custard apple trees in Brazil (Costa et al., 2019). Nonetheless, this is the first report of C. siamense and C. karstii causing anthracnose in atemoya.

Identification of *Colletotrichum* species using the multi-locus phylogeny has proved to be an important tool, with reliable results on these species identification (Álvarez et al., 2014; Firmino et al., 2014; Kamei et al., 2014; Balendres et al., 2019; Costa et al., 2019; Chung et al., 2020; Jayawardena et al., 2021; Talhinhas; Baroncelli, 2021). Data obtained in this study expanded the knowledge of

Table 1- Morphocultural data and pathogenicity tests of the species of Colletotrichum

the different Colletotrichum species associated with the atemoya anthracnose in Brazil.

According to Takahashi et al. (2009), only C. gloeosporioides was reported as the causal agent of atemoya anthracnose in Brazil. However, Firmino et al. (2014) later reported C. acutatum infecting atemoya leaves and C. boninense infecting fruits, branches, and leaves. Therefore, our study corroborates these findings and confirms the occurrence of more than one species of Colletotrichum causing anthracnose in atemoya.

Although C. gloeosporioides is considered the main causal agent of anthracnose in manyfruit trees, more than one species causing anthracnose in the same host has been frequently reported (Tozze Júnior et al., 2010; Costa et al., 2019; Silva-Cabral et al., 2020; Chung et al., 2020). Similar to the results found in our study, the occurrence of more than one Colletotrichum species causing anthracnose in other Annonaceae plants has been reported, such as C. gloeosporioides stricto sensu, C. brevisporum, C. cliviae, C. fructicola, C. gigasporum, C. karstii, C. siamense, C. theobromicola and C. tropicale in custard apple and soursop (Costa et al., 2019) and C. gloeosporioides, C. boninense, C. fragariae and C. magna in custard apple and soursop (Kamei et al., 2014). The same has occurred in other fruit trees, such as pomegranate, where the species C. theobromicola, C. siamense and C. fructicola were found (Silva-Cabral et al., 2019; 2020); Passion fruit, with the occurrence of C. acutatum, C. boninense and C. gloeosporioides (Almeida et al., 2007; Tozze Júnior et al., 2010); Avocado, being infected byC. siamense and C. karstii (Soares et al., 2021); and strawberry with C. miaoliense sp. nov., C. karstii, C. siamense, C. fructicola and C. boninense (Chung et al., 2020).

These are concerning results from an agronomic perspective, as the occurrence of more than one species of *Colletotrichum* infecting the same host might difficult the control of anthracnose. This raises the importance of this disease on different commercial fruit trees, given the differentiated behavior of *Colletotrichum* species, such as divergent sensitivity to fungicides (Silveira et al., 2020).

In this study, a molecular identification approach was used with the genes GAPDH, TUB2, MAT1-2-1, and the ITS region of the rDNA, and the results indicate that most species of *Colletotrichum* obtained in the atemoya samples showed high genetic diversity. The phylogenetic analysis used in this study showed that, although *C*. *karstii* (*C*. *boninense* complex) has been associated with atemoya anthracnose, the *C*. *gloeosporioides* species complex (*C*. *theobromicola*, *C*. *siamense*, and *C*. fructicola) had the largest number of grouped isolates (17 isolates), being, therefore, the group with the largest number of species infecting atemoya. Among the species described within the *gloeosporioides* complex, few are host-specific, which means that most of the species in this complex can be found in many crops and native species (Weir et al., 2012; Costa et al., 2019; Jayawardena et al., 2021; Soares et al., 2021). These results corroborate with other studies published recently, confirming the occurrence of several other species of the *gloeosporioides* complex associated with anthracnose in different fruit trees (Álvarez et al., 2019; Chung et al., 2020; Jayawardena et al., 2021; Soares et al., 2021).

However, as observed in our study, species of the gloeosporioides complex were not solely found to be associated with anthracnose in Annonaceae and other fruit trees (Kamei et al., 2014; Firmino et al., 2014; Costa et al., 2019; Jayawardena et al., 2021; Soares et al., 2021). Hence, as most species of *Colletotrichum* do not possess single host specificity, and cultivation of different fruit trees commonly occurs in the same or geographically close areas, this increases the dispersion of propagules, which partially explains the predominance of species within the same complex as the causal agents of anthracnose in commercial fruit trees (Vieira et al., 2018; Chung et al., 2020).

Similar results were also found by Álvarez et al. (2014) in a study carried out in Colombia with anthracnose in soursop plants. In their study, *Colletotrichum* species were distributed in three complexes: gloeosporioides (C. theobromicola, C. tropicale, C. siamense and C. gloeosporioides stricto sensu), boninense (C. karstii) and acutatum (an unresolved isolate). In Mexico, Villanueva-Arce et al. (2005) reported C. gloeosporioides as the causal agent of anthracnose in *Annonaceae*, with incidences above 50% of this species in cherimoya fruits. All these results reinforce the importance of this disease in *Annonaceae* plants and demonstrate the wide geographic distribution of *Colletotrichum* species.

All Colletotrichum species identified in our study induced circular brownish lesions, typical anthracnose symptoms observed in atemoya leaves as described by Junqueira & Junqueira (2014). Pathogenicity tests are essential for epidemiological studies, identifying whether a given Colletotrichum species is specific to a given host or many others (Cai et al. 2009).

The Colletotrichum isolates identified showed wide variation in colony color as observed in other reports (Kamei et al. 2014; Damm et al. 2014; Balendres et

al. 2020; Silva-Cabral et al. 2020). Temperature, storage, luminosity and growth medium can influence the stability and aspects of colonies (Vieira et al. 2018; Khodadadi et al. 2020). The colony characteristics observed in our study corroborate with previous studies. The isolates of the gloeosporioides complex showed similar characteristics to those described by Cannon et al. (2008), Weir et al. (2012) and Costa et al. (2019). The isolates colonies of the boninense complex were similar to those described by Costa et al. (2019) on isolates obtained from Annonaceae plants.

Anthracnose caused by different species of *Colletotrichum* is the most important disease of atemoya and other *Annonaceae* members in Brazil. The correct identification of the etiological agent is essential in understanding the pathogen life cycle and for effective management strategies aimed at reducing the damages caused by this disease in the field and post-harvest.

Referências

Alfenas A.C., Mafia, R.G., 2007. Métodos em fitopatologia. Editora UFV, Viçosa, Brasil.

Almeida, C.A. 2015. Diversidade e caracterização de espécies de Colletotrichum associadas a Annona spp. (Dissertação de mestrado) - Universidade Federal de Lavras, Lavras – MG, Brasil.

Álvarez, E., Gañán, L., Rojas-Triviño, A., Mejía, J.F., Llano, G.A., González, A. 2014. Diversity and pathogenicity of *Colletotrichum* species isolated from sour sop in Colombia. *European Journal of Plant Pathology* 139: 325-338.

Awachere, C.M., Kurian, R.M., Upreti, K.K., Laxman, R.H. 2018. Morphophysiological diversity in Anonna species. Scientia Horticulturae 234:58-62.

Balendres, M.A., Mendoza, J.V., Cueva, F.D. 2020. Characteristics of *Colletotrichum musae* PHBN0002 and the susceptibility of popular banana cultivars to postharvest anthracnose. *Indian Phytopathology* 73:57-64.

Cai, L., Hyde, K.D., Taylor, P.W.J., Weir, B.S., Waller, J.M., Abang, M.M., Zhang, J.Z., Yang, Y.L., Phoulivong, S., Liu, Z.Y., Prihastuti, H., Shivas, R.G., Mckenzie, E.H.C., Johnston, P.R.A. 2009. polyphasic approach for studying *Colletotrichum*. *Fungal Diversity* 39:183-204.

Cannon, P.F., Buddie, A.G., Bridge, P.D. 2008. The typification of *Colletotrichum gloeosporioides*. *Mycotaxonv* 104:189-204.

Cannon, P.F., Kirk, P.M. 2007. Fungal families of the world. Cambrigde, UK, CAB International.

Chung, P.C., Wu, H.Y., Wang, Y.W., Ariyawansa, H.A., Hu, H.P., Hung, T.H., Tzean, S.S., Chung, C.L. 2020. Diversity and pathogenicity of *Colletotrichum* species causing strawberry anthracnose in Taiwan and description of a new species, *Colletotrichum* miaoliense sp. Scientific Reports 10:1-16.

Costa, J.F.O., Kamei, S.H., Silva, J.R.A., Miranda, A.R.G.S., Netto, M.B., Silva, S.J.C., Correia, K.C., Lima, G.S.A., Assunçao, I.P. 2019. Species diversity of Colletotrichum infecting Annona spp. in Brazil. European Journal of Plant Pathology 153:1119-1130.

Damm, U., Cannon, P.F., Woudenberg, J.H.C., Johnston, P.R., Weir, B.S., Tan, Y.P., Shivas, R.G., Crous, P.W. 2012. The Colletotrichum boninense species complex. Studies in Mycology 73:1-36.

Damm, U., O'Connell, R.J., Groenewald, J.Z., Crous, P.W. 2014. The Colletotrichum destructivum species complex – hemibiotrophic pathogens of forage and field crops. Studies in Mycology 79:49-84.

Damm, U., Sato, T., Alizadeh, A., Groenewald, J.Z., Crous, P.W. 2019. The Colletotrichum dracaenophilum, C. magnum and C. orchidearum species complexes. Studies in Mycology 92:1-46.

Dhingra, O.D.; James, B.S. 2017. Basic Plant Pathology Methods. CRC press, Boca Raton, USA. 448 p.

Doyle, J.J., Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochem Bull* 19:11-15.

Edgar, R.C. 2004. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. *BMC Bioinformatics* 5:1-19.

Firmino, A.C., Tozze Junior, H.J., Tamelini, B.R., Nosaki, D.N., Furtado, E.L., 2014. Identificação de espécies de *Colletotrichum* associados à antracnose em plantas de atemoia e colonização do fungo nos frutos. *Summa Phytopathologica* 40:323-328.

Huang, F., Chen, G.Q., Hou, X., Fu, Y.S., Cai, L., Hyde, K.D., Li, H.Y. 2013. *Colletotrichum* species associated with cultivated citrus in China. *Fungal Diversity* 61:61-74.

Hyde, K.D., Nilsson, R.H., Zhou, N. 2014. One stop shop: backbones trees for important phytopathogenic genera: I. *Fungal Diversity* 67:21-125.

Jadrane, I., Kornievsky, M., Desjardin, D.E., He, Z.H., Cai, L., Hyde, K. 2012. First report of flower anthracnose caused by *Colletotrichum karstii* in white *Phalaenopsis orchids* in the United States. *Plant Disease* 96:1227-1227.

James, R.S., Ray, J., Tan, Y.P., Shivas, R.G. 2014. Colletotrichum siamense, C. theobromicola and C. queenslandicum from several plant species and the identification of C. asianum in the Northern Territory. Australasian Plant Disease Notes 9:1-6.

Jayawardena, R. S., Bhunjun, C. S., Hyde, K. D., Gentekaki, E., Itthayakorn, P. 2021. *Colletotrichum*: lifestyles, biology, morpho-species, species complexes and accepted species. *Mycosphere* 12:519–669.

Junqueira, N.T.V., Junqueira, K.P. 2014. Principais doenças de anonáceas no Brasil: Descrição e controle. *Revista Brasileira de Fruticultura* 36:55-64.

Comunicata Scientiae, v.15: e4111, 2024

Kamei, S.H., Costa, J.F.O., Brito Netto, M.S., Assunção, I.P., Lima, G.S. 2014. Identificação e caracterização de espécies de *Colletotrichum* associadas à antracnose de anonáceas no estado de Alagoas. *Revista Brasileira de Fruticultura* 36:209-216.

Khodadadi, F., González, J.B., Martin, P.L., Giroux, E., Bilodeau, G.J., Peter, K.A., Doyle, V.P., Aćimović, S.G. 2020. Identification and characterization of *Colletotrichum* species causing apple bitter rot in New York and description of *C. noveboracense* sp. *Scientific Reports* 10:1-19.

Lemos, E.E.P. 2014. The production of annona fruits in Brazil. Revista Brasileira de Fruticultura 36:77-85.

Liaw, C.C., Liou, J.R., Wu, T.Y., Chang, F.R., Wu, Y.C. 2016. Acetogenins from Annonaceae. *Progress in the Chemistry* of Organic Natural Products 101:113-230.

Lima, N.B. et al. 2013. Five Colletotrichum species are responsible for mango anthracnose in north eastern Brazil. *Fungal Diversity* 61:75–88.

Marins, E.F.C., Silva, M.J.S., Silva, J.L., Silva-Cabral, J.R.A., Costa, J.F.O., Feijó, F.M., Assunção, I.P., Lima, G.S.A. 2022. *Colletotrichum* species associated with sugar canered in Brazil. *Fungal Biology* 126:290-299.

Morita, K., Sugawara, Y., Minoshima, A., Hoshi, H., Yoshizawa, Y., Kagiwada, S., Ishikawa, S., Horie, H. 2015. The first Record of anthracnose on atemoya fruit caused by *Colletotrichum theobromicola* in Japan. *Annual Reportof the Kanto-Tosan Plant Protection Society* 62:73-77.

Peng, L. et al. 2012. *Colletotrichum* species on Citrus leaves in Guizhouand Yunnan provinces, China. *Cryptog. Mycolog* 33:267-283.

Posada, D., Buckley, T.R. 2004. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. *Systematic Biology* 53:793-808.

Rannala, B., Yang, Z. 1996. Probability distribution of molecular evolution ary trees: a new method of phylogenetic inference. *Journal of Molecular Evolution* 43: 304-311.

Rodrigues, A.L., Pinho, D.B., Lisboa, D.O., Nascimento, R.J., Pereira, O.L., Alfenas, A.C., Furtado, G.Q. 2014. *Colletotrichum theobromicola* causes defoliation, stem girdlingand death of mini-cuttings of eucalyptus in Brazil. *Tropical Plant Pathology* 39:326-330.

Rojas, E.I., Rehner, A.S., Samuels, G.J., VanBael, A.S., Herre, E.A., Cannon, P., Chen, R., Pan Ruiw, U.W., Yaping, Z., Peng, Y.Q., Sha, T. 2010. *Colletotrichum gloeosporioides s.l.* associated with *Theobroma* cacao and other plants in Panama': multilocus phylogenies distinguish hostassociated pathogens from asymptomatic endophytes. *Mycologia* 102:1318-1338.

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P. 2012. Mr Bayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Systematic Biology 61:539-542.

São José, A.R., Pires, M.M., Freitas, A.L.G.E., Ribeiro, D.P., Perez, L.A.A. 2014. Atualidades e perspectivas das anonáceas no mundo. *Revista Brasileira de Fruticultura* 36:86-93.

Silva, J.R.A., Chaves, T.P., Silva, A.R.G., Barbosa, L.F., Costa, J.F.O., Ramos-Sobrinho, R., Teixeira, R.R.O., Silva, S.J.C., Lima, G.S.A., Assunção, I.P. 2017. Molecular and morpho-cultural characterization of *Colletotrichum* spp. associated with anthracnose on *Capsicum* spp. in northeastern Brazil. *Tropical Plant Pathology* 42:315-319.

Silva-Cabral, J.R.A., Batista, L.R.L., Costa, J.F.O., Amorim, E.P.R., Lima, G.S.A., Assunção, I.P. 2020. Three species of *Colletotrichum* are associated with anthracnose of pomegranate in Brazil. *Comunicata Scientiae* 11:3126.

Silva-Cabral, J.R.A., Silva, J.L., Soares, L.S.H., Costa, J.F.O., Amorim, E.P.R., Lima. G.S.A., Assunção, I.P. 2019. First Report of *Colletotrichum fructicola* and *C. tropicale* causing anthracnose on orchids in Brazil. *Plant Disease* 103:2672-2672.

Silveira, A.L., Soares, M.G.O., Guimarães, S.S.C., Pereira, F.D., Pozzebon, B.C., Alves, E. 2020. Avaliação da sensibilidade *in vitro* de isolados de *Colletotrichum* spp. a fungicidas. *Nativa* 8:1-7.

Stevens, P.F. 2016. Angiosperm phylogeny website. Version 12. 2016. http://www.mobot.org/MOBOT/ research/APweb/ <{Acesso em Maio 2022}>.

Soares, M.G.O., Alves, E., Silveira, A.L., Pereira, F.D., Guimarães, S.S.C. 2021. *Colletottichum siamense* is the main etiological agent of anthracnose of avocado in South-eastern Brazil. *Plant Pathology* 70:154-166.

Sobrinho, R.B. 2014. Produção integrada de anonáceas no Brasil. Embrapa Agroindústria Tropical. *Revista Brasileira de Fruticultura* 36:102-107.

Sutton, B.C. 1992. The genus Glomerella and its anamorph Colletotrichum. In: Bailey, J.A., Jeger, M.J. (Ed.), Colletotrichum. Biology, Pathology and Control. CAB International, Wallingford, UK. p.1-26.

Talhinhas, P., Baroncelli, R. 2021. Colletotrichum species and complexes: geographic distribution, hostrange and conservation status. *Fungal Diversity* 110:109–198.

Takahashi, L.M., Rosa, D.D., Basseto, M.A., Furtado, E.L. 2009. Caracterização fisiológica, morfológica, cultural e patogênica de isolados de *Colletotrichum* spp. causadores de antracnose em atemoia (*Annona cherimola* x *Annona* squamosa). Boletín de Sanidad Vegetal Plagas 35:115-130.

Templeton, M.D. et al. 1992. Cloningand molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase-encoding gene and cDNA from the plant pathogenic fungus *Glomerella cingulata*. *Gene* 122:225–230.

Tozze Júnior, H.J., Fischer, I.H., Câmara, M.P.S., Massola

Júnior, N.S. 2010. First report of Colletotrichum boninense infecting yellow passion fruit (Passiflora edulis f. flavicarpa) in Brazil. Australasian Plant Disease Notes 5:70-72.

Udayanga, D., Manamgoda, D.S., Liu, X., Chukeatirote, E., Hyde, K.D. 2013. What are the common anthracnose pathogens of tropical fruits. *Fungal Diversity* 61:165-179.

Velho, A.C., Stadnik, M.J., Casanova, L., Mondino, P., Alaniz, S. 2014. First report of *Colletotrichum karstii* causing *Glomerella* leaf spot on apple in Santa Catarina State, Brazil. *Plant Disease* 98:157.

Veloso, J.S., Câmara, M.P.S., Lima, W.G., Michereff, S.J., Doyke, V.P. 2018. Why species delimitation matters for fungal ecology: *Colletotrichum* diversity on wild and cultivated cashew in Brazil. *Fungal Biology* 122:677-691.

Vieira, W.A.S., Lima, W.G., Nascimento, E.S., Michereff, S.J., Câmara, M.P.S., Doyle, V.P. 2018. The impact of phenotypic and molecular data on the inference of *Colletotrichum* diversity associated with Musa. *Mycologia* 109:912-934.

Vieira, W.A., Michereff, S.J., Morais Jr, M.A., Hyde, K.D., Câmara, M.P.S. 2014. Endophytic species of *Colletotrichum* associated with mango in northeastern Brazil. *Fungal Diversity* 67:181–202.

Villanueva-Arce, R., Hernández-Anguiano, A.M., Yáñez-Morales, M., Téliz-Ortíz, D., Mora-Aguilera, A., Cárdenas-Soriano, E., Castañeda-Villadózola, A. 2005. Characterización e identificación de *Colletotrichum fragariae* en frutos de chirimoya. *Agrociência* 39:93-106.

Wang, W., De Silva, D.D., Moslemi, A., Edwards, J., Ades, P.K., Crous, P.W., Taylor, P.W.J. 2021. Colletotrichum Species Causing Anthracnose of Citrus in Australia. Journal of Fungi 7: 47-71

Weir, B.S., Johnston, P.R., Damm, U. 2012. The Colletotrichum gloeosporioides species complex. Studies in Mycology 73:115-180.

Yang, Y. L. et al. 2012 Colletotrichum species on Orchidaceae in southwest China. Cryptogamie Mycologie 32:229-253.

Zauza, E.A.V., Alfenas, A.C., Mafia, G.R. 2007. Esterilização, preparo, de meios de cultura e fatores associados ao cultivo de fitopatógenos. In: Alfenas, C.A., Mafia, R.G. (eds) *Métodos em fitopatologia*. UFV, Viçosa, Brasil. pp 42.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License attribuition-type BY.

Supplementary table 1- Colletotrichum species and GenBank accession number used for phylogenetic analysis in this study.

	emenen species and e			pil)legenene al	
ESPÉCIES		Número	<u>os de acesso do Ger</u>	Bank	
ESFECIES	ISOLADOS	GAPDH	ITS	TUB2	APMaT
C geniama	ICMP18686	12009913	IX010243	1X010390	_
C. denignid		1010044	1010245	1010370	KN12/01/12
C. denigma	IC/MP18608	JX010044	JX010244	JX010389	KM360143
C. aeschynomenes*	ICMP17673	JX009930	JX010176	JX010392	KM360145
C. alatae	ICMP17919	JX009990	JX010190	JX010383	KC888932
C alatae*	CBS 304 67*	1X010011	1X010191	1X010449	_
C alionum	ICMP19421	12009959	12010244	12010394	
C. dilenoni		JX007737	JX010240	JX010308	-
C. allenum*	ICMP12071	JX010028	JX010251	JX010411	-
C. annellatum*	CBS129826	JQ005309	JQ005222	JQ005656	-
C. asianum	ICMP18696	JX009915	JX010192	JX010384	-
C asianum*	ICMP18580	IX010053	F 1972612	1X010406	FR718814
C. distanton	ICAAD19527	1010005	13772012	1X010400	VC000020
C. dolediou	IC/VIF 10557	JX010003	JX010205	JX010420	NC000730
C. aotearoa	ICMP1/326	JX010049	JX010202	JX010422	-
C. beeveri*	CBS128527	JQ005258	JQ005171	JQ005605	-
C boninense	CBS 128547	10005246	10005159	10005593	-
C honinense*	CBS 123755	10005240	10005153	10005588	_
C. borniliense	CD3 1237 33	10005240	10005034	10005/(0	
C. brasiliense	CB3128528	JQ005321	JQ005234	JQ005668	-
C. brasiliense*	CB\$128501	JQ005322	JQ005235	JQ005669	-
C. brassicicola*	CBS101059	JQ005259	JQ005172	JQ005606	-
C clidemiae	ICMP18706	1X009909	1X010274	1X010439	_
C clidemide*	ICMP18658	12010245	12010265	12010438	KC888929
C. cildeniide	CDC100017	37010203	10005172	10005(07	KC000727
C. colombiense	CR2154811	JQ005260	JQ005173	JQ005607	-
C. colombiense*	CBS129818	JQ005261	JQ005174	JQ005608	-
C. conoides*	CAUG17	-	KP890162	KP890168	KP890174
C cordvlinicola*	ICMP18579	1X009975	1X010226	1X010440	10899274
C. cordyiniicola	CPS109542	10005254	100051/7	10005701	30077274
C. Cyribiblicold	CD3120343	JQ005254	10003187	10003601	-
C. cynbibiicola*	IMI34/923	JQ005253	JQ005166	JQ005600	-
C. fructicola	CBS 125395	JX009992	JX010172	JX010408	-
C fructicola	COUFAL0332	ON479100	ON564677	ON 508044	_
C. frueticela	COULEAL0222	01470101	0110010//	011000011	
C. Incellection	COULATOSS	0114/7101		-	-
C. tructicola	COUFAL0334	UN4/9102	UN5646/8	014508045	-
C. fructicola*	ICMP18581	JX010033	JX010165	JX010405	JQ807838
C. aloeosporioides*	ICMP17821	JX010056	JX010152	JX010445	JQ807843
Calceosporioides	DAR76936	1X009976	IX010151	_	_
C hobolopicat		KE277 ADE	KE1520/0	KE00007E	=
C. Nebelense	MFLUCC I 307 26	KF377473	KF136063	KF2007/J	-
C. hippeastri	CBS125377	JQ005317	JQ005230	JQ005664	-
C. hippeastri*	CBS125376	JQ005318	JQ005231	JQ005665	-
Ć horii	C1180	GQ329681	GQ329690	IX010450	-
C horii*	C1049	CO329495	CO320497	1×10375	
C. 11011	C1007	60327803	60327887	JX103/3	-
C. Karstii	CBS128500	JQ005289	JQ005202	JQ005636	-
C. karstii	CBS128550	JQ005306	JQ005219	JQ005653	-
C. karstii	COUFAL0335	ON479117	ON564686	ON508052	-
C karstii	COUFAL0336	ON479118	ON564687	ON 508053	_
C. murao	ICMP 17917	12010015	12010142	1010395	
C. mosde	IC/NF 17017	JX010013	JX010142	JX010373	-
C. musae*	CR21168\0	JX010050	JX010146	HQ596280	KC888926
C. novae zelandiae	CBS130240	JQ005316	JQ005229	JQ005663	-
C novae zelandiae*	CB\$128505	10005315	10005228	10005662	-
C nunbaricola	CBS 472 04	12010031	10010100	1010300	
C. nopilalicola	CD3472.70	1000001	1/010100	JX010377	-
C. nupharicola*	ICMP1818/	JX009972	JX01018/	JX010398	JX145319
C. oncidii	CBS130242	JQ005257	JQ005170	JQ005604	-
C. oncidii*	CBS129828	10005256	10005169	1Q005603	-
C parsonside*	CB\$128525	10005320	10005233	10005667	
C. puisonside	C & 100	50000020	50003200	50000007	- KX (00177
C. persede	GATUU	KAOZUZ4Z	KA620306	KA620341	KX02U177
C. petchii	CB2118//4	JQ005312	JQ005225	JQ005659	-
C. petchii*	CBS378.94	JQ005310	JQ005223	JQ005657	-
C. phyllanthi*	CB\$175.67	10005308	JQ005221	1Q005655	-
C protege	CB\$13/301	KC842379	KC842385	KC842387	
C. protecte	CD5104001	KC0072077	KC007070	KC097101	
C. proiede	CB3132882	KC297009	KC297079	KC297101	
C. psidii*	CBS 145.29	JX009967	JX010219	JX010443	KC888931
C. queenslandicum	ICMP 1780	JX010010	JX010186	-	JX009693
C aueenslandicum*	ICMP1778	IX009934	1X010276	IX010414	-
C salsolae	CR\$119294	IX009917	IX0102/1	-	_
	ICAAD10051		1010241	-	V C QOODDE
C. SUISOIDE		JV010021	JAU10242	-	NC000723
C. siamense	ICMP1//95	JX010051	JX010162	1X0103A3	-
C. siamense	COUFAL0337	ON479103	ON564679	-	ON532813
C. siamense	COUFAL0338	ON479104	ON564680	ON508046	ON532814
C. sigmense*	ICMP18578	JX009924	JX010171	JX010404	JQ899289
Citainanense	UOM1119	MH728819	MH728805	MH844570	MH728824
C tainananaa*		ALI700000	ALIZ0000	ALIO A/EFO	MU70002/
C. idinanense*	CB3143066	1/11/20023	IVITI/ 20010	1/1/1040330	11/1 20030
C. theobromicola	ICMP 17895	JX010057	JX010284	JX010382	-
C. theobromicola*	CBS124945	JX010006	JX010294	JX010447	KC790726
C. theobromicola	COUFAL0339	ON479105	ON564681	ON508047	ON532815
C theobromicola	COUFAL0340	ON/79104		-	-
C theobromicold	COUEAL0241	ON/470107	015/4/92	01500040	
C. meobromicola	COUFALU341	0114/910/	011364682		-
C. meobromicola	COUFAL0342	UN4/9108	UN564683	014508049	-
C. theobromicola	COUFAL0343	ON479109	-	-	-
C. theobromicola	COUFAL0344	ON479110	-	-	-
C. theobromicola	COUFAL0345	ON479111	ON564684	ON 508050	ON532816
C theobromicals	COULADOAS	ON1470110	0,100-004	011000000	011002010
C. meobiomicold	COULATO 40	0114/7112	-	-	-
C. theobromicola	COUFAL0347	ON4/9113	-	-	-
C. theobromicola	COUFAL0348	ON479114	-	-	-
C. theobromicola	COUFAL0349	ON479115	ON564685	ON508051	-
C. theobromicola	COUFAL0350	ON479114	-	-	-
		19477110	-	10010441	-
C. 11	ICMP5285	01A600XF	JXU1026/	JXU1U441	-
C. fi*	ICMP4832	JX009952	JX010269	JX010442	KM360146
C. torulosun	CBS102667	JQ005252	JQ005165	JQ005599	-
C. torulosun*	CB\$128544	JQ005251	JQ005164	JQ005598	-
C tropicale	ICMP18672	1X010020	1X010275	1X010396	_
C tranicale*	CP\$10.40.40	1010020	IV0102/J	1010407	- KC700700
⊂. tropicale*	CR215444A	JUUUUX	JXU10264	JAUIU4U/	KC/90/28
C. viniferum	gg4	JN412800	JN412802	JN412811	-
C. viniferum*	yg1	JN412798	JN412804	JN412813	-
C. xanthorrhoeae	ICMP17820	JX010008	JX010260	-	-
					KC790689
C vantharhaana*	PDID 4500 4	12000007	10010071	10010440	
C. Xurimonnoede	DKIF 40074	JAUU772/	JAUIUZOI	JAU10440	

*Culturas ex-tipo. COUFAL - Coleção de Fitopatógenos da Universidade Federal de Alagoas.