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Abstract

Interpolation techniques can be a suitable approach to apply site-specific management 
for irrigation in fruit fields. However, which interpolation method will produce more accurate 
maps? In order to respond this question, the aim of this study was to test the performance of 
spatial interpolation techniques for mapping soil physical properties for site-specific irrigation 
management purpose in a mango orchard in the Brazilian semi-arid region. The experimental 
site was structured in a grid of 60 georeferenced points, which correspond to the number of 
mango trees spaced about 8 × 10-m in a fruit field in Petrolina county, Pernambuco. Soil texture, 
bulk density, volumetric water content at -0.01; -0.033; -0.06; -0.1; and -1.5 MPa, and soil water 
available were determined. Stochastic and deterministic interpolation methods were tested. Soil 
physical properties did not show spatial dependence preventing the interpolation by stochastic 
method (Kriging). However, it was possible to interpolate using deterministic methods such as 
inverse distance weight (IDW), local polynomial interpolation (LPI), and Radial basis functions 
(RBF). IDW and RBF showed the best results of map quality for physical properties, however, all 
interpolation method showed relative small errors and could be all used for delineating zones for 
site-specific irrigation management.

Keywords: deterministic, Mangifera indica L., precision agriculture, semiarid, stochastic.

Introduction
 The successful cultivation of various 

fruit species in the semi-arid region of Brazil has 
been favored by the irrigated agriculture poles. 
However, in order to provide food for sustainable 
development, since water resources are limited, 
agricultural water management must be taken 
into account (Valipour, 2015). One approach for 
agricultural water management is site-specific 
management based on soil physical attributes. 
Confirming this statement, Nascimento et al. 
(2014) demonstrate the efficacy of spatial analysis 
to apply site-specific irrigation management 
using soil physical properties (i.e, bulk density, 
soil water retention curve) in a vineyard in the 

irrigated Petrolina county pole.
 The spatial variability of soil properties is 

often assessed with data interpolation (Silva et 
al., 2017), however, selecting a proper spatial 
interpolation method is important, since different 
methods of interpolation can lead to different 
results (Li & Heap, 2011)

 Interpolation techniques can be classified 
into two main groups: deterministic and stochastic 
interpolation methods. Deterministic interpolation 
methods use closed-form mathematical formulas 
or the solution of a linear system of equations to 
interpolate the data. The weights assigned to 
each sample value depend only on the distance 
between the sample point and the location of 
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the interpolated point (Varouchakis & Hristopulos, 
2013). The most commonly used deterministic 
interpolation methods for site-specific agriculture 
management are inverse distance weighted 
(IDW) (Li & Heap, 2011). However, other methods, 
such as local polynomial interpolation (LPI) and 
radial basis functions (RBF) have started to be 
used in agriculture as well (Mueller, 2007, Xie et al., 
2011). All these options can be easily performed 
using most modern GIS (Geographic Information 
Systems) software packages.

 Stochastic methods employ the spatial 
correlations between values at neighboring 
points and a semivariogram, which measures the 
spatial correlation as a function of the distance 
between data points, should be fitted. The 
most widely used stochastic method is kriging 
(Varouchakis & Hristopulos, 2013).

 Different studies have found different 
results about more suitable interpolation 
technique (Li & Heap, 2011), in addition, 
Robinson & Metternicht (2006) verified that the 
best performance of an interpolation technique 
also depends on the soil variable which is being 
studied. Since there are no studies testing 
interpolation technique for delineating irrigation 
management zones in fruit fields in the semi-arid 
region of Brazil, the aim of this study is to test the 
performance of spatial interpolation techniques 
for mapping soil physical properties for site-
specific irrigation management purpose in a 
mango orchard in the Brazilian semi-arid region.

Materials and Methods
 This experiment was located in the 

Nilo Coelho irrigated perimeter, Petrolina 
County, Pernambuco state, northeastern Brazil 
(9°21'22.82" S, 40°33'06.95"W, elev. 388 m a.s.l.). 
The climate of the region, according to the 
Köppen classification, is of the ‘hot semi-arid’ 
(Bsh`) type, characterized by high temperatures 
(average 26°C), low humidity, high evaporation 
rates, and especially marked by the scarcity and 
irregularity in rainfall distribution (400 mm). The 
soil of the experimental area was classified as 
Yellow Argisol (Ultisol - American classification Soil 
Taxonomy).  A 13 years old (2002-2015) 
commercial mango orchard (cv. Tommy Atkins) 
irrigated by sprinkler irrigation system was used as 

the experimental area.
 The experimental site was structured 

in a grid of 60 georeferenced points, which 
correspond to the number of mango trees 
spaced about 8 × 10 m (Figure 1). Undisturbed 
soil cores (0.05 x 0.05 m) were taken from the 0 to 
0.4 m layer under the canopy of the mango trees 
in each point using a double-cylinder, hammer-
driven core sampler. Additionally, soil disturbed 
samples of each point were taken from the layer 
0 to 0.4 m using a Dutch auger. Undisturbed 
soil samples were used to measure soil bulk 
density (BD) and soil water retention (SWR) at 
matric potentials (ψ) of 0 and -0,006. Sieved (<2 
mm) soil samples were used to measure SWR 
at -0.01; -0.033; -0.06; -0.1; e -1.5 MPa. SWR was 
determined by the pressure plate apparatus (Soil 
Moisture Equipment Corp., Santa Barbara, CA), 
as described by Donagema (2011). For each 
sample, particle size was determined by the 
standard pipette method (Donagema, 2011). 
Soil water available (SWA) was calculated by the 
following equation (Equation 1)

             (1)

where SWA is the soil water available (cm cm-3), 
θFC is the volumetric water content (cm cm-3) in 
the field capacity for sandy soils (-0.01 MPa) and 
θPPW is the volumetric water content (cm cm-3) in 
the point of permanent withering (-1.5 MPa). 

 Descriptive statistical analysis [mean, 
maximum, and minimum, coefficient of variation 
(CV), skewness and kurtosis/] were calculated. 
To test the hypothesis of normality, the Shapiro & 
Wilk (1965) test was conducted. According to the 
method of Warrick & Nielsen (1980), the variability 
of soil attributes was classified according to the 
CV, where a CV value below 15 % was considered 
low, a value between 15 and 50 % was medium, 
and CV greater than 50 % was considered high.

 Spatial dependence of samples was 
tested using semivariogram models (Oliver & 
Webster, 2014). However, the study variables 
showed no spatial dependence or it was very 
weak (nugget effect value close to sill value), 
thus, only deterministic interpolation techniques 
were performed which were: Inverse distance 
weighting (IDW), Radial basis functions (RBF) and 
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Figure 1. Sampling scheme for soil attributes in an irrigated mango 
orchard in the semi-arid region, Brazil.

Local Polynomial interpolation (LPI).
 IDW interpolation technique is based 

on the premise that the predictions are a linear 
combination of available data. Power equal to 
2 was used for IDW. RBF is conceptually similar to 
fitting a rubber membrane through the measured 
sample values while minimizing the total curvature 
of the surface. Spline with Tension was the kernel 
function chosen for RBF. LPI is a process of finding 
a formula (often a polynomial) whose graph will 
pass through a given set of points. A complete 
explanation of these interpolation techniques 
can be found in Xie et al. (2011). 

 Cross-validation method was used for 
comparing the interpolation techniques and 
indicates which method gives the best results (Sun 
et al., 2009). This method involves consecutively 
removing a data point, interpolating the value 
from the remaining observations and comparing 
the predicted value with the measured value 
(Xie et al., 2011). The mean error (ME), mean 
square error (MSE) and the root mean square 
error (RMSE) calculated from the measured and 
interpolated values were used to compare the 
accuracy of predictions (Li & Heap, 2011). The ME 
is defined by (Equation 2):

             (2)

where vi was the difference between predicted 
value and observed value at location si, i  1,…, 
nv, and nv was the number of values in the check 
data set. 

 The MSE was the sum of accuracy and 
precision. It was defined in Equation (3):
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where vi
2 was the difference between the 

square of predicted value and observed value 
at location si, i  1,…, nv, and nv was the number 
of values in the check data set. The RMSE was 
defined as Equation (4) and it represents the error 
in the variable unit.

MSERMSE =                (4)

Smaller ME, MSE and RMSE values indicate fewer 
errors.

Results and Discussion
 Based on the average values of the 

soil texture, it is verified that the soil is classified 
as sandy. The minimum and maximum, and 
coefficient of variation values indicate that there 
is a high variation of soil texture fractions, mainly 
for the silt and sand fractions (Table 1). Similar 
results were found by Rodrigues et al. (2015) in 
an irrigated guava field in the semi-arid region of 
Brazil, which verified that even in a small field, soil 
texture can vary considerably. Therefore, wrong 
decisions could be made when management of 
water and fertilizer is defined by average values.

 According to Stolf et al. (2011), the soil 
bulk density limit, which correspond to the BD 
value when macroporosity (Ma) is equal to 10% 
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(The Ma value of 10 % has been considered 
a critical limit in relation to soil aeration), can 
be calculated by its sand content. Therefore, 
the BD mean value in the area was below the 
critical range (1.66 g cm-3) in this soil. However, 
the maximum values may indicate that there are 
values greater than the BD limit in the area and 

problems with soil aeration and drainage may be 
occurring. According to Warrick & Nielsen (1980) 
classification, based on CV values, the water 
content at all matric potentials and the soil water 
available (SWA) showed medium variability (CV 
between 15 and 50%).

Table 1. Descriptive statistics for soil attributes at the layer of 0 – 0.40 m depth in an irrigated mango orchard in the 
semi-arid region, Brazil.

Variables Mean Min. Max.
Coefficients

W-statistic Pr<W Normality
Variation Skewness Kurtosis

Clay 83 7 128 26 -0.58 1.95 0.96 0.04 Non-normal
Sand 841 719 893 4 -1.76 5.12 0.86 0.00 Non-normal

Silt 76 36 207 39 2.71 9.06 0.72 0.00 Non-normal
BD 1.49 1.11 1.83 10 -0.11 0.02 0.99 0.95 Normal
θ 0 0.41 0.30 0.51 12 -0.57 -0.05 0.96 0.07 Normal

θ 0.006 0.17 0.11 0.28 22 1.19 1.10 0.89 0.00 Non-normal
θ 0.01 0.12 0.07 0.18 18 0.39 0.26 0.99 0.74 Normal

θ 0.033 0.08 0.06 0.13 18 1.33 2.76 0.91 0.00 Non-normal
θ 0.06 0.07 0.05 0.09 15 0.41 -0.07 0.98 0.48 Normal
θ 1.5 0.06 0.04 0.09 16 0.57 0.67 0.97 0.19 Normal
SWA 0.06 0.03 0.11 31 0.26 -0.48 0.98 0.49 Normal

Clay, Sand and Silt (g kg-1); BD = soil Bulk Density (g cm-3); θ = volumetric water content (cm3 cm-3) at matric potentials (MPa). SWA = Soil Water Available (cm3 
cm-3).

 The highest coefficients of skewness and 
kurtosis values were found for the silt content. 
These results were expected since in soil texture 
analysis this fraction is obtained by difference, 
thus, there is a greater estimated error in it. 
However, although the sand and clay content 
values showed smaller skewness and kurtosis 
values comparing to silt content, the normality 
test showed non-normality of data for these 
variables. BD and all volumetric water content 
showed normal distribution of the data, except 
for those at 0.006 Mpa and 0.033 Mpa matric 
potentials. Even though Li & Heap (2011) have 
reported that normality of data may affect the 
performance of spatial interpolation methods, 
Wu et al. (2006) demonstrated that the quality of 
maps from normal and non-normal data set was 
very small, then we have chosen not to normalize 
the data for interpolating.

 The prediction accuracy of soil maps 
values of cross-validation is summarized in Table 2. 
Based on the Mean Error (ME), Mean Square Error 
(MSE) and Root Mean Square Error, the accuracy 
of soil texture maps showing the following order 
IDW>RBF>LPI. In addition, the greatest difference 
between interpolation methods was found for soil 
texture variables (clay, sand, and silt) comparing 

to the others variables. However, IDW and RBF 
showed a very similar performance, while LPI 
showed the worst results. Similar results were 
found by Mueller (2007) in a central Kentucky 
field applying ordinary kriging, IDW, RBF, and LPI 
interpolation procedures. Mueller (2007) verified 
that LPI procedures produced maps of unreliable 
quality, while ordinary kriging, IDW interpolation, 
and RBF produced similar maps.

 Clay content is the most important 
fraction of the soil texture since it is related 
to the majority of soil chemical and physical 
attributes and it can significantly affect irrigation 
management. Therefore, maps with smaller 
errors of clay content are preferred to define site-
specific management. In the present study, the 
RMSE varied from 22.6 to 25.1 kg kg-1 (Table 2). 
RMSE provides a measure of the error size (Li & 
Heap, 2011), and it can be considerate small even 
for the worst interpolation method performance 
(LPI = 25.1 kg kg-1) since this error is not sufficiently 
large to change irrigation management zone. 
Sumfleth & Duttmann (2008) found RMSE values 
varied from 47.6 g kg-1, 89.67 g kg-1 and 56.28 g 
kg-1 for clay, sand and silt content, respectively 
in irrigated fields in the eastern-central part of 
Jiangxi Province, China.
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Table 2. The prediction accuracy of interpolation methods for soil attributes at the layer of 0 – 0.40 m depth in an 
irrigated mango orchard in the semi-arid region, Brazil.

Variables
IDW RBF LPI
ME MSE RMSE ME MSE RMSE ME MSE RMSE

Clay 0.6426 511 22.6 0.2201 524 22.9 -2.4869 631 25.1
Sand -1.1086 1137 33.7 -0.5615 1178 34.3 0.0989 1626 40.3
Silt 0.466 1103 33.2 0.3414 1170 34.2 2.3879 1941 44.1
BD -0.0062 0.026 0.160 -0.0021 0.026 0.163 0.0087 0.030 0.173
θ 0 0.0022 0.002 0.049 0.0007 0.003 0.050 -0.0039 0.003 0.055
θ 0.006 -0.001 0.002 0.039 -0.0006 0.002 0.039 -0.0014 0.002 0.044
θ 0.01 -0.0004 0.0004 0.021 -0.0002 0.0004 0.021 -0.0001 0.0005 0.022
θ 0.033 -0.0007 0.0002 0.015 -0.0002 0.0002 0.015 0.0008 0.0003 0.016
θ 0.06 -0.0002 0.0001 0.011 -0.0000 0.0001 0.011 0.0002 0.0002 0.013
θ 1.5 -0.0002 0.0001 0.010 0.0000 0.0001 0.010 0.0001 0.0001 0.011
SWA -0.0003 0.0003 0.017 -0.0002 0.0003 0.017 -0.0003 0.0003 0.018

Clay, Sand and Silt (g kg-1); BD = soil Bulk Density (g cm-3); θ = volumetric soil moisture (cm3 cm-3) at matric potentials (MPa). SWA = Soil Water 
Available (cm3 cm-3). IDW = Inverse distance weighting; RBF = Radial basis functions; LPI = Local Polynomial interpolation. ME = Mean error; 
MSE = Mean square error; RMSE = Root mean square error.

 The RBF technique showed the smaller 
ME values among the interpolation methods 
tested (Table 2) for BD and all volumetric water 
content. ME is used for determining the degree 
of bias in the estimates, however, according to Li 
& Heap et al. (2011) it should be used cautiously 
as an indicator of accuracy because negative 
and positive estimates counteract each other 
and resultant bias tends to be lower than the 
actual error. On the other hand, based on the 
RMSE values, IDW showed a slight improvement 
compared to RBF for BD and soil water content 
at 0 MPa matric potential (Table 2). For all 
other variables, IDW and RBF showed the same 
performance. LPI showed the worst performance 
for all variables (Table 2).

 As stated by Li & Heap (2011) in their 
literature review, in most of the studies comparing 
interpolation methods in environmental sciences, 
including soil sciences, stochastic techniques 
(Simple kriging, ordinary kriging, universal kriging, 
co-kriging etc.) showed better results than 
deterministic techniques. This can be confirmed 
by results found by Yasrebi et al. (2009) who 
verified that ordinary kriging was the most 
suitable method for prediction and mapping 
the spatial distribution of soil chemical properties 
in a fallow land in Iran comparing to IDW using 
different numbers of power (from 1-5). Sumfleth 
& Duttmann (2008) also found that a stochastic 
method (regression kriging) was more efficient 
than a deterministic method (Inverse distance 
weighted, power equal to 1) for clay, sand and 
silt content in irrigated fields in the eastern-central 

part of Jiangxi Province, China. 
 Better results for stochastic methods are 

expected since samples with a strong spatial 
structure were mapped more accurately than 
samples that have weak spatial structure (Xie et 
al., 2011). Evidently, when there is strong spatial 
dependence kriging usually is the best choice 
since kriging is a linear unbiased prediction with 
minimum variance. However, in some cases, 
deterministic interpolation techniques are 
preferred. For example 1) when there are not 
spatial dependence and semivariograms cannot 
be fitted (Lu & Wong, 2008). This is the case of the 
present study, thus only deterministic methods 
were applied; 2) number of samples are not 
enough, since grid size is a very important factor in 
order to determine the spatial distribution pattern 
of soil attributes (Rodrigues et al., 2012), grids not 
very intensive may not be proper for mapping 
with kriging. 3) In general, IDW, LPI and RBFs 
are easy to use, due to fewer input parameters 
used, which is very important for farmers and 
agronomists to adopt. In contrast, Kriging is 
more difficult to use since Kriging interpolation 
including the following steps: statistic test, spatial 
structure analysis, and semivariance function 
fitting and so on (Teegavarapu, 2007; Xie et al., 
2011). In addition, the semivariance function 
fitting is subjective, different researchers may 
have different results (Xie et al., 2011).

 In general, the results of the present study 
demonstrated that IDW and RBF showed almost 
the same performance. The choice of which map 
should be used depending on the purpose. In 
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this case, the purpose is to define management 
zones for irrigation, thus, due to RBF provide a 
smoother surface (Figure 2, 3 and 4) than IDW it 
should be preferred, whereas maps interpolated 
by IDW method generate undesirable concentric 

areas of the same value around the known points 
more commonly known as "bullseye" (Zůvala et 
al., 2016), effects which can difficult to delineate 
management zones (Figures 2, 3 and 4).

Figure 2. Clay, Sand, Silt content and Bulk Density maps interpolated by inverse distance weight (IDW), 
Radial basis functions (RBF) and local polynomial interpolation (LPI) in an irrigated mango orchard in the 
semi-arid region, Brazil.
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Figure 3. Volumetric water content at 0, 0.006, 0.01 and 0.033 MPa tensions maps 
interpolated by inverse distance weight (IDW), Radial basis functions (RBF) and local 
polynomial interpolation (LPI) in an irrigated mango orchard in the semi-arid region, 
Brazil.
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Figure 4. Volumetric water content at 0.06, 1.5 MPa tensions and soil water available 
(SWA) maps interpolated by inverse distance weight (IDW), Radial basis functions 
(RBF) and local polynomial interpolation (LPI) in an irrigated mango orchard in the 
semi-arid region, Brazil.

Conclusions
 The data set of soil physical properties 

did not show spatial dependence preventing 
the interpolation by stochastic method (Kriging). 
However, it was possible to interpolate using 
deterministic methods such as inverse distance 
weight (IDW), local polynomial interpolation (LPI) 
and Radial basis functions (RBF).

 IDW and RBF showed the best results 
of map quality for physical properties in the 
study area, however, all interpolation method 
showed relative small errors and can be all used 
for delineating zones for site-specific irrigation 
management.
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